Case Study: A Microstructure–Property Multistage Fatigue (MSF) Analysis of a Cadillac Control Arm

[1]  B. M. Hillberry,et al.  Effects of constituent particle clusters on fatigue behavior of 2024-T3 aluminum alloy , 1998 .

[2]  David L. McDowell,et al.  On the driving force for fatigue crack formation from inclusions and voids in a cast A356 aluminum alloy , 2001 .

[3]  Zhirui Wang,et al.  Microscopic characteristics of fatigue crack propagation in aluminum alloy based particulate reinforced metal matrix composites , 1994 .

[4]  David L. McDowell,et al.  Microstructural Inclusion Influence on Fatigue of a Cast A356 Aluminum Alloy , 2010 .

[5]  Robert S. Piascik,et al.  Replica-based crack inspection , 2009 .

[6]  Zdenek P. Bazant,et al.  Scaling of Structural Failure , 1997 .

[7]  W. J. Plumbridge,et al.  Fatigue crack growth in two-phase alloys , 1987 .

[8]  David L. McDowell,et al.  Multistage Fatigue Modeling of Cast A356-T6 and A380-F Aluminum Alloys , 2007 .

[9]  David L. McDowell,et al.  Computational micromechanics analysis of cyclic crack-tip behavior for microstructurally small cracks in dual-phase Al–Si alloys , 2001 .

[10]  Darrell F. Socie,et al.  Fatigue damage accumulation in grey cast iron , 1987 .

[11]  H. W. Liu,et al.  An analysis of unzipping model for fatigue crack growth , 1976 .

[12]  Chingshen Li Vector CTD analysis for crystallographic crack growth , 1990 .

[13]  James C. Newman,et al.  Quantifying microstructurally small fatigue crack growth in an aluminum alloy using a silicon-rubber replica method , 2012 .

[14]  K. J. Miller,et al.  Fatigue cracks at notches , 1977 .

[15]  Y. Murakami,et al.  Effects of defects, inclusions and inhomogeneities on fatigue strength , 1994 .

[16]  K. J. Miller,et al.  THE EFFECTS OF MEAN AND ALTERNATING SHEAR STRESSES ON SHORT FATIGUE CRACK GROWTH RATES , 1992 .

[17]  D. J. Lingenfelser,et al.  A SWT Fatigue Mean Stress Model for A356-T6 Cast Aluminum Alloy , 1988 .

[18]  Yip-Wah Chung,et al.  Application of minimum energy formalism in a multiple slip band model for fatigue—II. Crack nucleation and derivation of a generalised Coffin-Manson law , 1991 .

[19]  Claude Bathias A Review of Fatigue of Aluminium Matrix Reinforced by Particles or Short Fibers , 1996 .

[20]  C Bathias,et al.  Relation Between Endurance Limits and Thresholds in the Field of Gigacycle Fatigue , 2000 .

[21]  D. Socie Critical Plane Approaches for Multiaxial Fatigue Damage Assessment , 1993 .

[22]  Ne Dowling,et al.  Fatigue at Notches and the Local Strain and Fracture Mechanics Approaches , 1979 .

[23]  David L. McDowell,et al.  Cyclic plasticity at pores and inclusions in cast Al-Si alloys , 2003 .

[24]  Mark F. Horstemeyer,et al.  Damage influence on Bauschinger effect of a cast A356 aluminum alloy , 1998 .

[25]  David L. McDowell,et al.  Microstructure-based fatigue modeling of cast A356-T6 alloy , 2003 .

[26]  F. V. Lawrence,et al.  MODELING THE LONG‐LIFE FATIGUE BEHAVIOR OF A CAST ALUMINUM ALLOY , 1993 .

[27]  Hayhurst,et al.  Damage Growth Under Nonproportional Loading , 1985 .

[28]  Mark F. Horstemeyer,et al.  Nanostructurally small cracks (NSC): A review on atomistic modeling of fatigue , 2010 .

[29]  Wei Sun,et al.  Modeling of plane strain fatigue crack closure , 1991 .

[30]  James C. Newman,et al.  A review of modelling small-crack behavior and fatigue-life predictions for aluminum alloys , 1994 .

[31]  Michael Ortiz,et al.  A micromechanical model of cyclic deformation and fatigue-crack nucleation in f.c.c. single crystals , 1997 .

[32]  J. R. Griffiths,et al.  CASTING DEFECTS AND THE FATIGUE BEHAVIOUR OF AN ALUMINIUM CASTING ALLOY , 1990 .

[33]  David L. McDowell,et al.  Microstructure-based multistage fatigue modeling of a cast AE44 magnesium alloy , 2007 .

[34]  A. Luo,et al.  Effect of twinning, slip, and inclusions on the fatigue anisotropy of extrusion-textured AZ61 magnesium alloy , 2011 .

[35]  Lyndon Edwards,et al.  Effect of surface texture on fatigue life in a squeeze-cast 6082 aluminium alloy , 1993 .

[36]  Peter J. Laz,et al.  Fatigue life prediction from inclusion initiated cracks , 1998 .

[37]  David L. McDowell,et al.  Finite element analysis of the stress distributions near damaged Si particle clusters in cast Al–Si alloys , 2000 .

[38]  Fan,et al.  The influence of modified intermetallics and Si particles on fatigue crack paths in a cast A356 Al alloy , 2000 .

[39]  Yip-Wah Chung,et al.  Application of minimum energy formalism in a multiple slip band model for fatigue — I. Calculation of slip band spacings , 1991 .

[40]  D. J. Lingenfelser,et al.  Low Cycle Fatigue of A356-T6 Cast Aluminum Alloy - A Round-Robin Test Program , 1988 .

[41]  M. Horstemeyer,et al.  Micromechanisms of multistage fatigue crack growth in a high-strength aluminum alloy , 2007 .

[42]  Darrell F. Socie,et al.  Crack nucleation and growth modeling in biaxial fatigue , 1988 .

[43]  David L. McDowell,et al.  Micromechanics Study of Fatigue Damage Incubation Following an Initial Overstrain , 2010 .

[44]  Kazuaki Shiozawa,et al.  CRACK INITIATION AND SMALL FATIGUE CRACK GROWTH BEHAVIOUR OF SQUEEZE‐CAST Al‐Si ALUMINIUM ALLOYS , 1997 .

[45]  F. H. Samuel,et al.  FRACTURE BEHAVIOUR OF Al12wt.%Si0.35wt.%Mg(0–0.02)wt.%Sr CASTING ALLOYS UNDER FATIGUE TESTING , 1995 .

[46]  Mark F. Horstemeyer,et al.  Integration of Basic Materials Research Into the Design of Cast Components by a Multi-Scale Methodology , 2000 .

[47]  R. Stephens,et al.  Low Cycle Fatigue of A356-T6 Cast Aluminum Alloy Wheels , 1988 .

[48]  David L. McDowell,et al.  Basic issues in the mechanics of high cycle metal fatigue , 1996 .