How to determine basis stability in interval linear programming

Interval linear programming (ILP) was introduced in order to deal with linear programming problems with uncertainties that are modelled by ranges of admissible values. Basic tasks in ILP such as calculating the optimal value bounds or set of all possible solutions may be computationally very expensive. However, if some basis stability criterion holds true then the problems becomes much more easy to solve. In this paper, we propose a method for testing basis stability. Even though the method is exponential in the worst case (not surprisingly due to NP-hardness of the problem), it is fast in many cases.

[1]  Jiri Rohn,et al.  Stability of the optimal basis of a linear program under uncertainty , 1993, Oper. Res. Lett..

[2]  Milan Hladík,et al.  Complexity of necessary efficiency in interval linear programming and multiobjective linear programming , 2012, Optim. Lett..

[3]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[4]  A. Neumaier Interval methods for systems of equations , 1990 .

[5]  Jiri Rohn,et al.  Sufficient Conditions for Regularity and Singularity of Interval Matrices , 1999, SIAM J. Matrix Anal. Appl..

[6]  Kin Keung Lai,et al.  A class of linear interval programming problems and its application to portfolio selection , 2002, IEEE Trans. Fuzzy Syst..

[7]  Vladik Kreinovich,et al.  COMPUTING EXACT COMPONENTWISE BOUNDS ON SOLUTIONS OF LINEAR SYSTEMS WITH INTERVAL DATA IS NP-HARD∗ , 1995 .

[8]  R. B. Kearfott,et al.  A Comparison of some Methods for Solving Linear Interval Equations , 1997 .

[9]  J. Rohn,et al.  Solvability of systems of interval linear equations and inequalities , 2006 .

[10]  Christian Jansson,et al.  A self-validating method for solving linear programming problems with interval input data , 1988 .

[11]  H. R. Mashhadi,et al.  Optimal Coordination of Directional Overcurrent Relays Considering Different Network Topologies Using Interval Linear Programming , 2010, IEEE Transactions on Power Delivery.

[12]  Dorota Kuchta,et al.  A modification of a solution concept of the linear programming problem with interval coefficients in the constraints , 2008, Central Eur. J. Oper. Res..

[13]  Svatopluk Poljak,et al.  Checking robust nonsingularity is NP-hard , 1993, Math. Control. Signals Syst..

[14]  Frantisek Mráz Calculating the exact bounds of optimal valuesin LP with interval coefficients , 1998, Ann. Oper. Res..

[15]  J. Rohn,et al.  Interval linear programming , 2006 .

[16]  Rudolf Krawczyk Fehlerabschätzung bei linearer Optimierung , 1975, Interval Mathematics.

[17]  Guohe Huang,et al.  The Interval Linear Programming: A Revisit , 2008 .

[18]  W. Prager,et al.  Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides , 1964 .

[19]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[20]  Milan Hladík Optimal value range in interval linear programming , 2009, Fuzzy Optim. Decis. Mak..

[21]  T. Csendes Developments in Reliable Computing , 2000 .

[22]  Guohe Huang,et al.  Development of a Fuzzy-Queue-Based Interval Linear Programming Model for Municipal Solid Waste Management , 2010 .

[23]  J. Rohn,et al.  Linear interval inequalities , 1994 .

[24]  Jiri Rohn,et al.  A Handbook of Results on Interval Linear Problems , 2005 .

[25]  J. Rohn Systems of linear interval equations , 1989 .

[26]  Cécile Murat,et al.  Linear Programming with interval right handsides June 29 , 2007 , 2007 .

[27]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[28]  C. Jansson,et al.  Rigorous solution of linear programming problems with uncertain data , 1991, ZOR Methods Model. Oper. Res..

[29]  Son-Lin Nie,et al.  A dual-interval vertex analysis method and its application to environmental decision making under uncertainty , 2010, Eur. J. Oper. Res..

[30]  J. Rohn Forty necessary and sufficient conditions for regularity of interval matrices: A survey , 2009 .

[31]  Jana Koníckocá,et al.  Sufficient condition of basis stability of an interval linear programming problem , 2001 .

[32]  Tapan Kumar Pal,et al.  Fuzzy Preference Ordering of Interval Numbers in Decision Problems , 2009, Studies in Fuzziness and Soft Computing.