Ubiquitin and membrane protein turnover: from cradle to grave.

From the moment of cotranslational insertion into the lipid bilayer of the endoplasmic reticulum (ER), newly synthesized integral membrane proteins are subject to a complex series of sorting, trafficking, quality control, and quality maintenance systems. Many of these processes are intimately controlled by ubiquitination, a posttranslational modification that directs trafficking decisions related to both the biosynthetic delivery of proteins to the plasma membrane (PM) via the secretory pathway and the removal of proteins from the PM via the endocytic pathway. Ubiquitin modification of integral membrane proteins (or "cargoes") generally acts as a sorting signal, which is recognized, captured, and delivered to a specific cellular destination via specialized trafficking events. By affecting the quality, quantity, and localization of integral membrane proteins in the cell, defects in these processes contribute to human diseases, including cystic fibrosis, circulatory diseases, and various neuropathies. This review summarizes our current understanding of how ubiquitin modification influences cargo trafficking, with a special emphasis on mechanisms of quality control and quality maintenance in the secretory and endocytic pathways.

[1]  H. Ploegh,et al.  Protein quality control in the ER: balancing the ubiquitin checkbook. , 2011, Trends in cell biology.

[2]  S. Emr,et al.  TORC1 Regulates Endocytosis via Npr1-Mediated Phosphoinhibition of a Ubiquitin Ligase Adaptor , 2011, Cell.

[3]  Richard T. Lee,et al.  The arrestin domain-containing 3 protein regulates body mass and energy expenditure. , 2011, Cell metabolism.

[4]  Larissa A. Jarzylo,et al.  Nedd4‐mediated AMPA receptor ubiquitination regulates receptor turnover and trafficking , 2011, Journal of neurochemistry.

[5]  R. Piper,et al.  How Ubiquitin Functions with ESCRTs , 2011, Traffic.

[6]  J. Brodsky,et al.  Protein folding and quality control in the endoplasmic reticulum: Recent lessons from yeast and mammalian cell systems. , 2011, Current opinion in cell biology.

[7]  G. Weinmaster,et al.  Notch ligand ubiquitylation: what is it good for? , 2011, Developmental cell.

[8]  Scott D Emr,et al.  The ESCRT pathway. , 2011, Developmental cell.

[9]  Thomas I. Milac,et al.  Exposed hydrophobicity is a key determinant of nuclear quality control degradation , 2011, Molecular biology of the cell.

[10]  Songyu Wang,et al.  Routing Misfolded Proteins through the Multivesicular Body (MVB) Pathway Protects against Proteotoxicity* , 2011, The Journal of Biological Chemistry.

[11]  J. Schwabe,et al.  The IDOL-UBE2D complex mediates sterol-dependent degradation of the LDL receptor. , 2011, Genes & development.

[12]  H. Schindelin,et al.  Hierarchical binding of cofactors to the AAA ATPase p97. , 2011, Structure.

[13]  J. Hurley,et al.  Structural basis for endosomal recruitment of ESCRT‐I by ESCRT‐0 in yeast , 2011, The EMBO journal.

[14]  J Wade Harper,et al.  Constructing and decoding unconventional ubiquitin chains , 2011, Nature Structural &Molecular Biology.

[15]  B. André,et al.  Systematic Mutational Analysis of the Intracellular Regions of Yeast Gap1 Permease , 2011, PloS one.

[16]  D. Rubinsztein,et al.  Protein misfolding disorders and macroautophagy , 2011, Current opinion in cell biology.

[17]  N. Zheng,et al.  Structural regulation of cullin-RING ubiquitin ligase complexes. , 2011, Current opinion in structural biology.

[18]  K. Nakayama,et al.  Proteome of ubiquitin/MVB pathway: possible involvement of iron‐induced ubiquitylation of transferrin receptor in lysosomal degradation , 2011, Genes to cells : devoted to molecular & cellular mechanisms.

[19]  Thomas Sommer,et al.  Protein dislocation from the ER. , 2011, Biochimica et biophysica acta.

[20]  A. Weissman,et al.  Ubiquitylation in ERAD: Reversing to Go Forward? , 2011, PLoS biology.

[21]  David Y. Thomas,et al.  Identification of a NBD1-binding pharmacological chaperone that corrects the trafficking defect of F508del-CFTR. , 2011, Chemistry & biology.

[22]  R. Piper,et al.  A single ubiquitin is sufficient for cargo protein entry into MVBs in the absence of ESCRT ubiquitination , 2011, The Journal of cell biology.

[23]  Yongqiang Chen,et al.  The regulation of autophagy – unanswered questions , 2011, Journal of Cell Science.

[24]  Thomas I. Milac,et al.  Disorder targets misorder in nuclear quality control degradation: a disordered ubiquitin ligase directly recognizes its misfolded substrates. , 2011, Molecular cell.

[25]  A. Sorkin,et al.  Protein Kinase C-dependent Ubiquitination and Clathrin-mediated Endocytosis of the Cationic Amino Acid Transporter CAT-1* , 2011, The Journal of Biological Chemistry.

[26]  N. Pedemonte,et al.  High-throughput screening of libraries of compounds to identify CFTR modulators. , 2011, Methods in molecular biology.

[27]  R. Klevit,et al.  E2s: structurally economical and functionally replete. , 2011, The Biochemical journal.

[28]  A. Audhya,et al.  ESCRT-0 Assembles as a Heterotetrameric Complex on Membranes and Binds Multiple Ubiquitinylated Cargoes Simultaneously* , 2010, The Journal of Biological Chemistry.

[29]  J. Hurley The ESCRT complexes , 2010, Critical reviews in biochemistry and molecular biology.

[30]  Shengqiu Tang,et al.  Insulin-induced gene: A new regulator in lipid metabolism , 2010, Peptides.

[31]  G. Lukács,et al.  Quality control for unfolded proteins at the plasma membrane , 2010, The Journal of cell biology.

[32]  Tatsuya Maeda,et al.  Endocytosis of the Aspartic Acid/Glutamic Acid Transporter Dip5 Is Triggered by Substrate-Dependent Recruitment of the Rsp5 Ubiquitin Ligase via the Arrestin-Like Protein Aly2 , 2010, Molecular and Cellular Biology.

[33]  M. Cyert,et al.  α-Arrestins Aly1 and Aly2 Regulate Intracellular Trafficking in Response to Nutrient Signaling , 2010, Molecular biology of the cell.

[34]  A. Simonin,et al.  Nedd4-1 and β-Arrestin-1 Are Key Regulators of Na+/H+ Exchanger 1 Ubiquitylation, Endocytosis, and Function* , 2010, The Journal of Biological Chemistry.

[35]  D. Klionsky,et al.  Eaten alive: a history of macroautophagy , 2010, Nature Cell Biology.

[36]  E. R. Andersson,et al.  Control of Notch-ligand endocytosis by ligand-receptor interaction , 2010, Journal of Cell Science.

[37]  Jason C. Young,et al.  Peripheral Protein Quality Control Removes Unfolded CFTR from the Plasma Membrane , 2010, Science.

[38]  H. Pan,et al.  Arrestin domain‐containing protein 3 recruits the NEDD4 E3 ligase to mediate ubiquitination of the β2‐adrenergic receptor , 2010, EMBO reports.

[39]  R. Piper,et al.  Hrs Controls Sorting of the Epithelial Na+ Channel between Endosomal Degradation and Recycling Pathways* , 2010, The Journal of Biological Chemistry.

[40]  R. Malik,et al.  Arrestin-2 Interacts with the Endosomal Sorting Complex Required for Transport Machinery to Modulate Endosomal Sorting of CXCR4 , 2010, Molecular biology of the cell.

[41]  S. Lyle,et al.  ARRDC3 suppresses breast cancer progression by negatively regulating integrin β4 , 2010, Oncogene.

[42]  M. Albesa,et al.  Ubiquitylation and SUMOylation of Cardiac Ion Channels , 2010, Journal of cardiovascular pharmacology.

[43]  F. Schweisguth,et al.  Neuralized Promotes Basal to Apical Transcytosis of Delta in Epithelial Cells , 2010, Molecular biology of the cell.

[44]  S. Gygi,et al.  Multiple mechanisms collectively regulate clathrin-mediated endocytosis of the epidermal growth factor receptor , 2010, The Journal of cell biology.

[45]  B. André,et al.  The ubiquitin code of yeast permease trafficking. , 2010, Trends in cell biology.

[46]  Paul G. Ince,et al.  Mutations in CHMP2B in Lower Motor Neuron Predominant Amyotrophic Lateral Sclerosis (ALS) , 2010, PloS one.

[47]  J. Hurley,et al.  VHS domains of ESCRT‐0 cooperate in high‐avidity binding to polyubiquitinated cargo , 2010, The EMBO journal.

[48]  Ivan Dikic,et al.  Ubiquitin ligase complexes: from substrate selectivity to conjugational specificity , 2010, Biological chemistry.

[49]  J. Hurley,et al.  Molecular Mechanism of Multivesicular Body Biogenesis by ESCRT Complexes , 2010, Nature.

[50]  Songyu Wang,et al.  Evasion of Endoplasmic Reticulum Surveillance Makes Wsc1p an Obligate Substrate of Golgi Quality Control , 2010, Molecular biology of the cell.

[51]  M. Sudol,et al.  HECT E3 Ubiquitin Ligase Nedd4-1 Ubiquitinates ACK and Regulates Epidermal Growth Factor (EGF)-Induced Degradation of EGF Receptor and ACK , 2010, Molecular and Cellular Biology.

[52]  A. Sorkin,et al.  Lysine 63-linked Polyubiquitination of the Dopamine Transporter Requires WW3 and WW4 Domains of Nedd4-2 and UBE2D Ubiquitin-conjugating Enzymes* , 2010, The Journal of Biological Chemistry.

[53]  Daniela Hoeller,et al.  Regulation of ubiquitin receptors by coupled monoubiquitination. , 2010, Sub-cellular biochemistry.

[54]  H. Pelham,et al.  Arrestin-Mediated Endocytosis of Yeast Plasma Membrane Transporters , 2009, Traffic.

[55]  M. Rapé,et al.  Building ubiquitin chains: E2 enzymes at work , 2009, Nature Reviews Molecular Cell Biology.

[56]  D. Komander The emerging complexity of protein ubiquitination. , 2009, Biochemical Society transactions.

[57]  Mair E. M. Thomas,et al.  The TRC8 E3 ligase ubiquitinates MHC class I molecules before dislocation from the ER , 2009, The Journal of cell biology.

[58]  T. Gunn,et al.  Abnormal regulation of TSG101 in mice with spongiform neurodegeneration , 2009, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease.

[59]  David Komander,et al.  Breaking the chains: structure and function of the deubiquitinases , 2009, Nature Reviews Molecular Cell Biology.

[60]  G. Parenti Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics , 2009, EMBO molecular medicine.

[61]  P. Tontonoz,et al.  LXR Regulates Cholesterol Uptake Through Idol-Dependent Ubiquitination of the LDL Receptor , 2009, Science.

[62]  H. Fares,et al.  Derlin-dependent accumulation of integral membrane proteins at cell surfaces , 2009, Journal of Cell Science.

[63]  Zhongmei Zhou,et al.  WW domain containing E3 ubiquitin protein ligase 1 targets the full-length ErbB4 for ubiquitin-mediated degradation in breast cancer , 2009, Oncogene.

[64]  P. Bieniasz The cell biology of HIV-1 virion genesis. , 2009, Cell host & microbe.

[65]  V. Venkataramanan,et al.  The deubiquitinases USP33 and USP20 coordinate β2 adrenergic receptor recycling and resensitization , 2009, The EMBO journal.

[66]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[67]  P. Negulescu,et al.  Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770 , 2009, Proceedings of the National Academy of Sciences.

[68]  S. Paiva,et al.  Glucose-induced Ubiquitylation and Endocytosis of the Yeast Jen1 Transporter , 2009, The Journal of Biological Chemistry.

[69]  B. André,et al.  K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway , 2009, The Journal of cell biology.

[70]  J. Bomberger,et al.  The Deubiquitinating Enzyme USP10 Regulates the Post-endocytic Sorting of Cystic Fibrosis Transmembrane Conductance Regulator in Airway Epithelial Cells* , 2009, The Journal of Biological Chemistry.

[71]  R. Piper,et al.  ESCRT ubiquitin-binding domains function cooperatively during MVB cargo sorting , 2009, The Journal of cell biology.

[72]  John Rush,et al.  Quantitative Proteomics Reveals the Function of Unconventional Ubiquitin Chains in Proteasomal Degradation , 2009, Cell.

[73]  H. Pelham,et al.  Inefficient Quality Control of Thermosensitive Proteins on the Plasma Membrane , 2009, PloS one.

[74]  G. Hummer,et al.  Hybrid Structural Model of the Complete Human ESCRT‐0 Complex , 2009, Structure.

[75]  J. Collinge,et al.  The role of CHMP2B in frontotemporal dementia. , 2009, Biochemical Society transactions.

[76]  I. Madshus,et al.  Epsin 1 is Involved in Recruitment of Ubiquitinated EGF Receptors into Clathrin‐Coated Pits , 2009, Traffic.

[77]  Jeffrey L. Brodsky,et al.  One step at a time: endoplasmic reticulum-associated degradation , 2008, Nature Reviews Molecular Cell Biology.

[78]  S. Emr,et al.  Arrestin-Related Ubiquitin-Ligase Adaptors Regulate Endocytosis and Protein Turnover at the Cell Surface , 2008, Cell.

[79]  H. Pelham,et al.  Arrestin-like proteins mediate ubiquitination and endocytosis of the yeast metal transporter Smf1 , 2008, EMBO reports.

[80]  P. P. Di Fiore,et al.  Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. , 2008, Developmental cell.

[81]  J. Forman-Kay,et al.  Interactions between the three CIN85 SH3 domains and ubiquitin: implications for CIN85 ubiquitination. , 2008, Biochemistry.

[82]  R. Haguenauer‐Tsapis,et al.  Substrate‐ and Ubiquitin‐Dependent Trafficking of the Yeast Siderophore Transporter Sit1 , 2008, Traffic.

[83]  Aaron Ciechanover,et al.  The HECT family of E3 ubiquitin ligases: multiple players in cancer development. , 2008, Cancer cell.

[84]  C. Kaiser,et al.  Different ubiquitin signals act at the Golgi and plasma membrane to direct GAP1 trafficking. , 2008, Molecular biology of the cell.

[85]  Samuel H. Payne,et al.  A Multidimensional Chromatography Technology for In-depth Phosphoproteome Analysis*S , 2008, Molecular & Cellular Proteomics.

[86]  Sharad Kumar,et al.  The Ubiquitin-Protein Ligase Nedd4-2 Differentially Interacts with and Regulates Members of the Tweety Family of Chloride Ion Channels* , 2008, Journal of Biological Chemistry.

[87]  Y. Kalaidzidis,et al.  The clathrin adaptor Gga2p is a phosphatidylinositol 4-phosphate effector at the Golgi exit. , 2008, Molecular biology of the cell.

[88]  A. Buchberger,et al.  UBX domain proteins: major regulators of the AAA ATPase Cdc48/p97 , 2008, Cellular and Molecular Life Sciences.

[89]  K. Wilkinson,et al.  The Deubiquitinating Enzymes , 2008 .

[90]  Bethan McDonald,et al.  Regulation of Tsg101 expression by the steadiness box: a role of Tsg101-associated ligase. , 2007, Molecular biology of the cell.

[91]  John P. Johnson,et al.  The Deubiquitinating Enzyme UCH-L3 Regulates the Apical Membrane Recycling of the Epithelial Sodium Channel* , 2007, Journal of Biological Chemistry.

[92]  J. Benovic,et al.  Arrestin-2 Interacts with the Ubiquitin-Protein Isopeptide Ligase Atrophin-interacting Protein 4 and Mediates Endosomal Sorting of the Chemokine Receptor CXCR4* , 2007, Journal of Biological Chemistry.

[93]  A. Isaacs,et al.  Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease , 2007, The Journal of cell biology.

[94]  A. Sorkin,et al.  EGF receptor ubiquitination is not necessary for its internalization , 2007, Proceedings of the National Academy of Sciences.

[95]  Han Liu,et al.  The MIT Domain of UBPY Constitutes a CHMP Binding and Endosomal Localization Signal Required for Efficient Epidermal Growth Factor Receptor Degradation* , 2007, Journal of Biological Chemistry.

[96]  B. André,et al.  Evidence for coupled biogenesis of yeast Gap1 permease and sphingolipids: essential role in transport activity and normal control by ubiquitination. , 2007, Molecular biology of the cell.

[97]  E. Leithe,et al.  Ubiquitination of Gap Junction Proteins , 2007, Journal of Membrane Biology.

[98]  J. Bonifacino,et al.  PI4P promotes the recruitment of the GGA adaptor proteins to the trans-Golgi network and regulates their recognition of the ubiquitin sorting signal. , 2007, Molecular biology of the cell.

[99]  Donglei Zhang,et al.  Correctors of Protein Trafficking Defects Identified by a Novel High‐Throughput Screening Assay , 2007, Chembiochem : a European journal of chemical biology.

[100]  G. Hummer,et al.  The Vps27/Hse1 complex is a GAT domain-based scaffold for ubiquitin-dependent sorting. , 2007, Developmental cell.

[101]  C. Philpott,et al.  Ubiquitin‐dependent trafficking of Arn1, the ferrichrome transporter of Saccharomyces cerevisiae , 2007, Molecular biology of the cell.

[102]  J. Ericsson,et al.  SREBP in signal transduction: cholesterol metabolism and beyond. , 2007, Current opinion in cell biology.

[103]  G. Barsh,et al.  Spongiform neurodegeneration-associated E3 ligase Mahogunin ubiquitylates TSG101 and regulates endosomal trafficking. , 2007, Molecular biology of the cell.

[104]  J. Huibregtse,et al.  Regulation of catalytic activities of HECT ubiquitin ligases. , 2007, Biochemical and biophysical research communications.

[105]  Yuan He,et al.  Ubiquitin binds to and regulates a subset of SH3 domains. , 2007, Molecular cell.

[106]  J. E. V. van Leeuwen,et al.  UBPY-mediated Epidermal Growth Factor Receptor (EGFR) De-ubiquitination Promotes EGFR Degradation* , 2007, Journal of Biological Chemistry.

[107]  A. Cooper,et al.  Misfolded proteins traffic from the endoplasmic reticulum (ER) due to ER export signals. , 2006, Molecular biology of the cell.

[108]  J. Huibregtse,et al.  Hse1, a component of the yeast Hrs-STAM ubiquitin-sorting complex, associates with ubiquitin peptidases and a ligase to control sorting efficiency into multivesicular bodies. , 2006, Molecular biology of the cell.

[109]  Joon-No Lee,et al.  Sterol-regulated Degradation of Insig-1 Mediated by the Membrane-bound Ubiquitin Ligase gp78* , 2006, Journal of Biological Chemistry.

[110]  R. Lefkowitz,et al.  New roles for beta-arrestins in cell signaling: not just for seven-transmembrane receptors. , 2006, Molecular cell.

[111]  A. Amerik,et al.  A conserved late endosome–targeting signal required for Doa4 deubiquitylating enzyme function , 2006, The Journal of cell biology.

[112]  J. Huibregtse,et al.  The Deubiquitinating Enzyme Ubp2 Modulates Rsp5-dependent Lys63-linked Polyubiquitin Conjugates in Saccharomyces cerevisiae*> , 2006, Journal of Biological Chemistry.

[113]  John P. Overington,et al.  How many drug targets are there? , 2006, Nature Reviews Drug Discovery.

[114]  M. Setou,et al.  Regulation of Amino Acid Transporter ATA2 by Ubiquitin Ligase Nedd4-2* , 2006, Journal of Biological Chemistry.

[115]  N. Suzuki,et al.  Structural basis of ubiquitin recognition by mammalian Eap45 GLUE domain , 2006, Nature Structural &Molecular Biology.

[116]  A. Chang,et al.  Multiple Degradation Pathways for Misfolded Mutants of the Yeast Plasma Membrane ATPase, PMA1* , 2006, Journal of Biological Chemistry.

[117]  J. Collinge,et al.  ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B) , 2006, Neurology.

[118]  K. Hallows,et al.  AMP-activated Kinase Inhibits the Epithelial Na+ Channel through Functional Regulation of the Ubiquitin Ligase Nedd4-2* , 2006, Journal of Biological Chemistry.

[119]  A. Sorkin,et al.  RNA Interference Screen Reveals an Essential Role of Nedd4–2 in Dopamine Transporter Ubiquitination and Endocytosis , 2006, The Journal of Neuroscience.

[120]  M. Komada,et al.  A Deubiquitinating Enzyme UBPY Regulates the Level of Protein Ubiquitination on Endosomes , 2006, Traffic.

[121]  C. Kaiser,et al.  Amino acids regulate retrieval of the yeast general amino acid permease from the vacuolar targeting pathway. , 2006, Molecular biology of the cell.

[122]  John P. Johnson,et al.  Clathrin-mediated Endocytosis of the Epithelial Sodium Channel , 2006, Journal of Biological Chemistry.

[123]  F. Lee,et al.  Cell Survival through Trk Neurotrophin Receptors Is Differentially Regulated by Ubiquitination , 2006, Neuron.

[124]  S. Shimada,et al.  14-3-3 Mediates phosphorylation-dependent inhibition of the interaction between the ubiquitin E3 ligase Nedd4-2 and epithelial Na+ channels. , 2006, Biochemistry.

[125]  I. Prior,et al.  The Ubiquitin Isopeptidase UBPY Regulates Endosomal Ubiquitin Dynamics and Is Essential for Receptor Down-regulation* , 2006, Journal of Biological Chemistry.

[126]  P. Lehner,et al.  Lysine‐63‐linked ubiquitination is required for endolysosomal degradation of class I molecules , 2006, The EMBO journal.

[127]  Y. Kong,et al.  Novel function of POSH, a JNK scaffold, as an E3 ubiquitin ligase for the Hrs stability on early endosomes. , 2006, Cellular signalling.

[128]  R. Beynon,et al.  Activation of the Endosome-Associated Ubiquitin Isopeptidase AMSH by STAM, a Component of the Multivesicular Body-Sorting Machinery , 2006, Current Biology.

[129]  A. Chang,et al.  Quality control of a mutant plasma membrane ATPase: ubiquitylation prevents cell-surface stability , 2006, Journal of Cell Science.

[130]  J. Rosen,et al.  INSIG: a broadly conserved transmembrane chaperone for sterol‐sensing domain proteins , 2005, The EMBO journal.

[131]  Christine C. Wu,et al.  Enhanced Ubiquitylation and Accelerated Degradation of the Dopamine Transporter Mediated by Protein Kinase C* , 2005, Journal of Biological Chemistry.

[132]  H. Ploegh,et al.  Viral modulation of antigen presentation: manipulation of cellular targets in the ER and beyond , 2005, Immunological reviews.

[133]  Cheol‐Hee Kim,et al.  Mind bomb 1 is essential for generating functional Notch ligands to activate Notch , 2005, Development.

[134]  J. Huibregtse,et al.  The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme , 2005, The EMBO journal.

[135]  Cheol‐Hee Kim,et al.  Mind Bomb-2 Is an E3 Ligase for Notch Ligand* , 2005, Journal of Biological Chemistry.

[136]  H. Stenmark,et al.  Eap45 in Mammalian ESCRT-II Binds Ubiquitin via a Phosphoinositide-interacting GLUE Domain*♦ , 2005, Journal of Biological Chemistry.

[137]  K. Ayscough,et al.  Lsb5p interacts with actin regulators Sla1p and Las17p, ubiquitin and Arf3p to couple actin dynamics to membrane trafficking processes. , 2005, The Biochemical journal.

[138]  S. Shimada,et al.  14-3-3 Proteins Modulate the Expression of Epithelial Na+ Channels by Phosphorylation-dependent Interaction with Nedd4-2 Ubiquitin Ligase* , 2005, Journal of Biological Chemistry.

[139]  D. Gottschling,et al.  Degradation-Mediated Protein Quality Control in the Nucleus , 2005, Cell.

[140]  P. De Camilli,et al.  The association of epsin with ubiquitinated cargo along the endocytic pathway is negatively regulated by its interaction with clathrin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[141]  P. Transidico,et al.  Clathrin-independent endocytosis of ubiquitinated cargos. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[142]  Sharad Kumar,et al.  Nedd4-2 Functionally Interacts with ClC-5 , 2004, Journal of Biological Chemistry.

[143]  A. D. Robertson,et al.  The GAT Domains of Clathrin-associated GGA Proteins Have Two Ubiquitin Binding Motifs* , 2004, Journal of Biological Chemistry.

[144]  Erin Fitch,et al.  Fat facets and Liquid facets promote Delta endocytosis and Delta signaling in the signaling cells , 2004, Development.

[145]  Natalie Luhtala,et al.  Bro1 coordinates deubiquitination in the multivesicular body pathway by recruiting Doa4 to endosomes , 2004, The Journal of cell biology.

[146]  J. McCullough,et al.  AMSH is an endosome-associated ubiquitin isopeptidase , 2004, The Journal of cell biology.

[147]  H. Stenmark,et al.  Defective downregulation of receptor tyrosine kinases in cancer , 2004, The EMBO journal.

[148]  Michel Bouvier,et al.  Pharmacological chaperones: potential treatment for conformational diseases , 2004, Trends in Endocrinology & Metabolism.

[149]  H. Ploegh,et al.  A membrane protein required for dislocation of misfolded proteins from the ER , 2004, Nature.

[150]  F. Lang,et al.  Regulation of glucose transporter SGLT1 by ubiquitin ligase Nedd4-2 and kinases SGK1, SGK3, and PKB. , 2004, Obesity research.

[151]  A. Chang,et al.  Ubiquitin-mediated targeting of a mutant plasma membrane ATPase, Pma1-7, to the endosomal/vacuolar system in yeast. , 2004, Molecular biology of the cell.

[152]  R. Zamoyska,et al.  Signalling in T-lymphocyte development: integration of signalling pathways is the key. , 2004, Current opinion in immunology.

[153]  J. Bonifacino,et al.  Interactions of GGA3 with the ubiquitin sorting machinery , 2004, Nature Cell Biology.

[154]  S. Emr,et al.  Multivesicular body sorting: ubiquitin ligase Rsp5 is required for the modification and sorting of carboxypeptidase S. , 2003, Molecular biology of the cell.

[155]  C. Volland,et al.  Direct sorting of the yeast uracil permease to the endosomal system is controlled by uracil binding and Rsp5p-dependent ubiquitylation. , 2003, Molecular biology of the cell.

[156]  B. André,et al.  Permease Recycling and Ubiquitination Status Reveal a Particular Role for Bro1 in the Multivesicular Body Pathway* , 2003, Journal of Biological Chemistry.

[157]  A. Parodi,et al.  Quality control and protein folding in the secretory pathway. , 2003, Annual review of cell and developmental biology.

[158]  R. Lefkowitz,et al.  Regulation of V2 Vasopressin Receptor Degradation by Agonist-promoted Ubiquitination* , 2003, Journal of Biological Chemistry.

[159]  Steven P Gygi,et al.  A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[160]  S. Emr,et al.  Bro1 is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae , 2003, Journal of Cell Science.

[161]  Pier Paolo Di Fiore,et al.  Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation , 2003, Nature Cell Biology.

[162]  R. Lefkowitz,et al.  Trafficking Patterns of β-Arrestin and G Protein-coupled Receptors Determined by the Kinetics of β-Arrestin Deubiquitination* , 2003, The Journal of Biological Chemistry.

[163]  L. Saidi,et al.  Structure of the GAT domain of human GGA1: A syntaxin amino-terminal domain fold in an endosomal trafficking adaptor , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[164]  M. von Zastrow,et al.  Ubiquitination-independent Trafficking of G Protein-coupled Receptors to Lysosomes* , 2002, The Journal of Biological Chemistry.

[165]  F. Vogel,et al.  ER-golgi traffic is a prerequisite for efficient ER degradation. , 2002, Molecular biology of the cell.

[166]  I. Madshus,et al.  Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes , 2002, Nature Cell Biology.

[167]  G. Payne,et al.  Sla1p serves as the targeting signal recognition factor for NPFX(1,2)D-mediated endocytosis , 2002, The Journal of cell biology.

[168]  Pier Paolo Di Fiore,et al.  A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins , 2002, Nature.

[169]  Bing Zhang,et al.  A specific protein substrate for a deubiquitinating enzyme: Liquid facets is the substrate of Fat facets. , 2002, Genes & development.

[170]  H. Pelham,et al.  A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies , 2002, Nature Cell Biology.

[171]  Linyi Chen,et al.  Ubiquitin‐Independent Entry into the Yeast Recycling Pathway , 2002, Traffic.

[172]  Joshua D. Schnell,et al.  Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis , 2002, Nature Cell Biology.

[173]  David Pearce,et al.  Phosphorylation of Nedd4‐2 by Sgk1 regulates epithelial Na+ channel cell surface expression , 2001, The EMBO journal.

[174]  B. André,et al.  Ubiquitin Is Required for Sorting to the Vacuole of the Yeast General Amino Acid Permease, Gap1* , 2001, The Journal of Biological Chemistry.

[175]  T. Kohout,et al.  Regulation of Receptor Fate by Ubiquitination of Activated β2-Adrenergic Receptor and β-Arrestin , 2001, Science.

[176]  A. Chang,et al.  A mutant plasma membrane ATPase, Pma1-10, is defective in stability at the yeast cell surface , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[177]  S. Emr,et al.  Ubiquitin-Dependent Sorting into the Multivesicular Body Pathway Requires the Function of a Conserved Endosomal Protein Sorting Complex, ESCRT-I , 2001, Cell.

[178]  R. Haguenauer‐Tsapis,et al.  Deubiquitination Step in the Endocytic Pathway of Yeast Plasma Membrane Proteins: Crucial Role of Doa4p Ubiquitin Isopeptidase , 2001, Molecular and Cellular Biology.

[179]  J. Bonifacino,et al.  Sorting of Mannose 6-Phosphate Receptors Mediated by the GGAs , 2001, Science.

[180]  J. Huibregtse,et al.  Localization of the Rsp5p Ubiquitin-Protein Ligase at Multiple Sites within the Endocytic Pathway , 2001, Molecular and Cellular Biology.

[181]  C. Kaiser,et al.  Components of a Ubiquitin Ligase Complex Specify Polyubiquitination and Intracellular Trafficking of the General Amino Acid Permease , 2001, The Journal of cell biology.

[182]  A. Amerik,et al.  The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. , 2000, Molecular biology of the cell.

[183]  Tony Hunter,et al.  Structural basis for phosphoserine-proline recognition by group IV WW domains , 2000, Nature Structural Biology.

[184]  A L Cadavid,et al.  The function of the Drosophila fat facets deubiquitinating enzyme in limiting photoreceptor cell number is intimately associated with endocytosis. , 2000, Development.

[185]  L. Hicke,et al.  Monoubiquitin carries a novel internalization signal that is appended to activated receptors , 2000, The EMBO journal.

[186]  A. J. Parodi,et al.  Protein glucosylation and its role in protein folding. , 2000, Annual review of biochemistry.

[187]  A. Amerik,et al.  The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast. , 1999, Molecular biology of the cell.

[188]  Christopher H. Tipper,et al.  Yeast Mutants Affecting Possible Quality Control of Plasma Membrane Proteins , 1999, Molecular and Cellular Biology.

[189]  S. Emr,et al.  Ligand recognition and domain structure of Vps10p, a vacuolar protein sorting receptor in Saccharomyces cerevisiae. , 1999, European journal of biochemistry.

[190]  Y. Li,et al.  Elimination of defective alpha-factor pheromone receptors , 1997, Molecular and cellular biology.

[191]  W. B. Snyder,et al.  Novel Golgi to vacuole delivery pathway in yeast: identification of a sorting determinant and required transport component , 1997, The EMBO journal.

[192]  G. Payne,et al.  The sequence NPFXD defines a new class of endocytosis signal in Saccharomyces cerevisiae , 1996, The Journal of cell biology.

[193]  C. Kaiser,et al.  A pathway for targeting soluble misfolded proteins to the yeast vacuole , 1996, The Journal of cell biology.

[194]  B. André,et al.  Ubiquitination Mediated by the Npi1p/Rsp5p Ubiquitin-protein Ligase Is Required for Endocytosis of the Yeast Uracil Permease (*) , 1996, The Journal of Biological Chemistry.

[195]  Howard Riezman,et al.  Ubiquitination of a Yeast Plasma Membrane Receptor Signals Its Ligand-Stimulated Endocytosis , 1996, Cell.

[196]  K. Kuchler,et al.  The yeast multidrug transporter Pdr5 of the plasma membrane is ubiquitinated prior to endocytosis and degradation in the vacuole , 1996, FEBS letters.

[197]  R. Baker,et al.  Control of Cell Fate by a Deubiquitinating Enzyme Encoded by the fat facets Gene , 1995, Science.

[198]  R. Kölling,et al.  The ABC‐transporter Ste6 accumulates in the plasma membrane in a ubiquitinated form in endocytosis mutants. , 1994, The EMBO journal.