Vector Space and Matrix Methods in Signal and System Theory
暂无分享,去创建一个
[1] Arthur Albert,et al. Regression and the Moore-Penrose Pseudoinverse , 2012 .
[2] Simon Haykin,et al. Neural Networks and Learning Machines , 2010 .
[3] G. Strang. Introduction to Linear Algebra , 1993 .
[4] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[5] S. T. Alexander,et al. Globally optimal rational approximation using homotopy continuation methods , 1992, IEEE Trans. Signal Process..
[6] Ivan W. Selesnick,et al. Reweighted Least Squares Design of Fir Filters , 1992, The Digital Signal Processing workshop.
[7] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[8] S. Thomas Alexander,et al. A relationship between the recursive least squares update and homotopy continuation methods , 1991, IEEE Trans. Signal Process..
[9] Arnold Neumaier,et al. Solving Ill-Conditioned and Singular Linear Systems: A Tutorial on Regularization , 1998, SIAM Rev..
[10] Michael Elad,et al. Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[11] Ricardo Arturo Vargas. Iterative design of lp digital filters , 2008 .
[12] C. Burrus,et al. Introduction to Wavelets and Wavelet Transforms: A Primer , 1997 .
[13] C. R. Rao,et al. Generalized Inverse of Matrices and its Applications , 1972 .
[14] T. Moon,et al. Mathematical Methods and Algorithms for Signal Processing , 1999 .
[15] P. Halmos. Finite-Dimensional Vector Spaces , 1960 .
[16] Soo-Chang Pei,et al. An introduction to discrete finite frames , 1997, IEEE Signal Process. Mag..
[17] Gilbert Strang. LINEAR ALGEBRA and Learning from Data First Edition MANUAL FOR INSTRUCTORS , 2019 .
[18] Richard G. Baraniuk,et al. Compressive Sensing , 2008, Computer Vision, A Reference Guide.
[19] S. Waldron. An Introduction to Finite Tight Frames , 2018 .
[20] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[21] C. D. Meyer,et al. Generalized inverses of linear transformations , 1979 .
[22] A. J. Sieradski. An Introduction to Topology and Homotopy , 1991 .
[23] C. Sidney Burrus,et al. Constrained least square design of FIR filters without specified transition bands , 1996, IEEE Trans. Signal Process..
[24] R. Young,et al. An introduction to nonharmonic Fourier series , 1980 .
[25] I. Selesnick. Introduction to Sparsity in Signal Processing * , 2012 .
[26] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[27] R. Marks. Introduction to Shannon Sampling and Interpolation Theory , 1990 .
[28] Audra E. Kosh,et al. Linear Algebra and its Applications , 1992 .
[29] R. E. Kalman,et al. Linear system theory-The state space approach , 1965 .
[30] I. Daubechies,et al. Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.
[31] Adi Ben-Israel,et al. Generalized inverses: theory and applications , 1974 .
[32] R. Penrose. On best approximate solutions of linear matrix equations , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.
[33] D. Luenberger. Optimization by Vector Space Methods , 1968 .
[34] J. Kovacevic,et al. Life Beyond Bases: The Advent of Frames (Part I) , 2007, IEEE Signal Processing Magazine.
[35] Soo-Chang Pei,et al. Sparse Fast Fourier Transform by downsampling , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[36] Bhaskar D. Rao,et al. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..
[37] Charles L. Lawson,et al. Solving least squares problems , 1976, Classics in applied mathematics.
[38] Piotr Indyk,et al. Nearly optimal sparse fourier transform , 2012, STOC '12.
[39] J. Tinsley Oden,et al. Applied functional analysis , 1996 .
[40] R. Penrose. A Generalized inverse for matrices , 1955 .
[41] C. Sidney Burrus,et al. Iterative reweighted least-squares design of FIR filters , 1994, IEEE Trans. Signal Process..
[42] E. Cheney. Introduction to approximation theory , 1966 .
[43] M. Zwaan. An introduction to hilbert space , 1990 .
[44] Kannan Ramchandran,et al. Computing a k-sparse n-length Discrete Fourier Transform using at most 4k samples and O(k log k) complexity , 2013, 2013 IEEE International Symposium on Information Theory.
[45] C. Sidney Burrus,et al. Constrained least squares design of FIR filters using iterative reweighted least squares , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).
[46] P. Halmos. Introduction to Hilbert Space: And the Theory of Spectral Multiplicity , 1998 .
[47] I. Daubechies. Ten Lectures on Wavelets , 1992 .
[48] Piotr Indyk,et al. Simple and practical algorithm for sparse Fourier transform , 2012, SODA.
[49] R. Fletcher. Practical Methods of Optimization , 1988 .
[50] Cleve B. Moler,et al. Numerical computing with MATLAB , 2004 .
[51] D. Donoho. For most large underdetermined systems of equations, the minimal 𝓁1‐norm near‐solution approximates the sparsest near‐solution , 2006 .
[52] D. Donoho. Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .
[53] Gene H. Golub,et al. Matrix computations , 1983 .
[54] Ivan W. Selesnick,et al. Introduction to Sparsity in Signal Processing 1 , 2012 .
[55] E. Polak. Introduction to linear and nonlinear programming , 1973 .
[56] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[57] A. Benveniste,et al. Multiscale system theory , 1990, 29th IEEE Conference on Decision and Control.
[58] C. Sidney Burrus,et al. On the structure of efficient DFT algorithms , 1983, IEEE Trans. Acoust. Speech Signal Process..
[59] Yonina C. Eldar. Sampling Theory: Beyond Bandlimited Systems , 2015 .
[60] Vivek K Goyal,et al. Foundations of Signal Processing , 2014 .
[61] Michael Athans. Time-domain analysis and design of control systems , 1966 .
[62] James S. Walker. Fast Fourier Transforms , 1991 .
[63] J. Kovacevic,et al. Life Beyond Bases: The Advent of Frames (Part II) , 2007, IEEE Signal Processing Magazine.
[64] C. S. Burrus,et al. Least p-power error design of FIR filters , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.
[65] Paulo J. S. G. Ferreira,et al. Mathematics for Multimedia Signal Processing II: Discrete Finite Frames and Signal Reconstruction , 1999 .
[66] K. S. Banerjee. Generalized Inverse of Matrices and Its Applications , 1973 .