Extreme Elevation on a 2-Manifold

Given a smoothly embedded 2-manifold in ℝ3, we define the elevation of a point as the height difference to a canonically defined second point on the same manifold. Our definition is invariant under rigid motions and can be used to define features such as lines of discontinuous or continuous but non-smooth elevation. We give an algorithm for finding points of locally maximum elevation, which we suggest mark cavities and protrusions and are useful in matching shapes as for example in protein docking.

[1]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[2]  P. Giblin,et al.  Curves and Singularities , 1984 .

[3]  Frédéric Chazal,et al.  Molecular shape analysis based upon the morse-smale complex and the connolly function , 2002, SCG '03.

[4]  M. Deakin Catastrophe theory. , 1977, Science.

[5]  Herbert Edelsbrunner,et al.  Hierarchical Morse—Smale Complexes for Piecewise Linear 2-Manifolds , 2003, Discret. Comput. Geom..

[6]  F. Crick,et al.  The packing of α‐helices: simple coiled‐coils , 1953 .

[7]  Ho-Lun Cheng,et al.  Dynamic Skin Triangulation , 2001, SODA '01.

[8]  Herbert Edelsbrunner,et al.  Coarse and Reliable Geometric Alignment for Protein Docking , 2005, Pacific Symposium on Biocomputing.

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  A. Elcock,et al.  Computer Simulation of Protein−Protein Interactions , 2001 .

[11]  D'ARCY W. THOMPSON,et al.  Mean Sea-Level , 1920, Nature.

[12]  L. T. Ten Eyck,et al.  Rapid atomic density methods for molecular shape characterization. , 2001, Journal of molecular graphics & modelling.

[13]  J. Janin,et al.  Structural basis of macromolecular recognition. , 2002, Advances in protein chemistry.

[14]  M. Goresky,et al.  Stratified Morse theory , 1988 .

[15]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[16]  Robert E. Tarjan,et al.  Design of data structures for mergeable trees , 2006, SODA '06.

[17]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[18]  Valerio Pascucci,et al.  Loops in Reeb Graphs of 2-Manifolds , 2004, Discret. Comput. Geom..

[19]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[20]  Valerio Pascucci,et al.  Morse-smale complexes for piecewise linear 3-manifolds , 2003, SCG '03.

[21]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[22]  J. Wagoner,et al.  Pseudo-isotopies of compact manifolds , 1973 .

[23]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[24]  H. Edelsbrunner,et al.  Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design , 1998, Protein science : a publication of the Protein Society.

[25]  M. L. Connolly Shape complementarity at the hemoglobin alpha 1 beta 1 subunit interface. , 1986, Biopolymers.

[26]  D. Bleecker,et al.  Stability of Gauss maps , 1978 .

[27]  Ruth Nussinov,et al.  Principles of docking: An overview of search algorithms and a guide to scoring functions , 2002, Proteins.

[28]  D'a. W. Thompson MEAN SEA LEVEL , 1920 .