Large reversible magnetocaloric effect caused by two successive magnetic transitions in ErGa compound

Intermetallic compound ErGa exhibits two successive magnetic transitions: spin-reorientation transition at TSR=15 K and ferromagnetic-paramagnetic transition at TC=30 K. Both transitions contribute greatly to the magnetic entropy change (ΔSM), each yielding a significant peak on their ΔSM-T curve and thus a considerable value of refrigerant capacity (RC) without hysteresis loss. For a magnetic field change of 5 T, the maximal values of −ΔSM are 21.3 J/kg K at TC and 16.5 J/kg K at TSR, with an RC value of 494 J/kg. Large reversible magnetocaloric effect and RC indicate the potentiality of ErGa as a candidate magnetic refrigerant at low temperatures.

[1]  L. P. Cardoso,et al.  Ambient pressure colossal magnetocaloric effect tuned by composition in Mn1−xFexAs , 2006, Nature materials.

[2]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[3]  E. Gmelin,et al.  Metamagnetic transition and magnetocaloric effect in ErCo2 , 1999 .

[4]  Xavier Moya,et al.  Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys , 2005, Nature materials.

[5]  Bucheng Li,et al.  Magnetic and reversible magnetocaloric properties of (Gd1−xDyx)4Co3 ferrimagnets , 2009 .

[6]  K. Gschneidner,et al.  The correlation of the magnetic properties and the magnetocaloric effect in (Gd1−xErx)NiAl alloys , 1998 .

[7]  A. Tishin,et al.  The Magnetocaloric Effect and its Applications , 2003 .

[8]  B. Banerjee On a generalised approach to first and second order magnetic transitions , 1964 .

[9]  B. Li,et al.  Large reversible magnetocaloric effect in Tb(3)Co compound , 2008 .

[10]  F. Hu,et al.  Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 , 2001 .

[11]  Karl A. Gschneidner,et al.  Magnetocaloric effect and magnetic refrigeration , 1999 .

[12]  S. Malik,et al.  Effect of magnetic polarons on the magnetic, magnetocaloric, and magnetoresistance properties of the intermetallic compound HoNiAl , 2007 .

[13]  G. Wen,et al.  LETTER TO THE EDITOR: Magnetic entropy change in RCoAl (R = Gd, Tb, Dy, and Ho) compounds: candidate materials for providing magnetic refrigeration in the temperature range 10 K to 100 K , 2001 .

[14]  N. Shohata Magnetic Properties of Rare Earth Gallium Intermetallic Compounds , 1977 .

[15]  K. Nenkov,et al.  Specific heat of the Gd3Co and Gd3Ni compounds , 2003 .

[16]  Lei Zhang,et al.  Magnetic-phase transitions and magnetocaloric effects , 2002 .

[17]  V. Pecharsky,et al.  Recent Developments in Magnetic Refrigeration , 1999 .

[18]  Zhidong Zhang,et al.  Giant magnetocaloric effect in ε-(Mn0.83Fe0.17)3.25Ge antiferromagnet , 2007 .

[19]  Vitalij K. Pecharsky,et al.  Magnetocaloric effect from indirect measurements: Magnetization and heat capacity , 1999 .

[20]  P. Arora,et al.  Magnetocaloric effect in DyCu2 , 2009 .

[21]  K. Gschneidner,et al.  Influence of the crystalline electrical field on the magnetocaloric effect of DyAl 2 , ErAl 2 , and DyNi 2 , 1998 .

[22]  K. Gschneidner,et al.  Description and Performance of a Near-Room Temperature Magnetic Refrigerator , 1998 .

[23]  Zhidong Zhang,et al.  Giant room-temperature magnetocaloric effect in Mn1−xCrxAs , 2008 .

[24]  S. Gama,et al.  Magnetoresistivity as a probe to the field-induced change of magnetic entropy inRAl2compounds(R=Pr,Nd,Tb,Dy,Ho,Er) , 2006 .

[25]  H. Wada,et al.  Giant magnetocaloric effect of MnAs1−xSbx , 2001 .

[26]  V. Krylov,et al.  The magnetic spin-reorientation transitions in the RGa (R=rare earth) intermetallic compounds studied by measurements of the hyperfine interactions of the 119Sn probe atoms , 2007 .