Combined shape and topology optimization of 3D structures

We present a method for automatic generation of 3D models based on shape and topology optimization. The optimization procedure, or model generation process, is initialized by a set of boundary conditions, an objective function, constraints and an initial structure. Using this input, the method will automatically deform and change the topology of the initial structure such that the objective function is optimized subject to the specified constraints and boundary conditions. For example, this tool can be used to improve the stiffness of a structure before printing, reduce the amount of material needed to construct a bridge, or to design functional chairs, tables, etc. which at the same time are visually pleasing.The structure is represented explicitly by a simplicial complex and deformed by moving surface vertices and relabeling tetrahedra. To ensure a well-formed tetrahedral mesh during these deformations, the Deformable Simplicial Complex method is used. The deformations are based on optimizing the objective, which in this paper will be maximizing stiffness. Furthermore, the optimization procedure will be subject to constraints such as a limit on the amount of material and the difference from the original shape. Graphical abstractDisplay Omitted HighlightsAutomatic design of 3D structures given a set of requirements for that structure.Efficient shape and topology optimization utilizing an adaptive tetrahedral mesh.Explicit shape representation made possible by the Deformable Simplicial Complex method.

[1]  Raúl A. Feijóo,et al.  THE TOPOLOGICAL DERIVATIVE FOR THE POISSON'S PROBLEM , 2003 .

[2]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[3]  Pierre Alliez,et al.  On the equilibrium of simplicial masonry structures , 2013, ACM Trans. Graph..

[4]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[5]  Pascal Frey,et al.  A mesh evolution algorithm based on the level set method for geometry and topology optimization , 2013, Structural and Multidisciplinary Optimization.

[6]  Markus H. Gross,et al.  Computational design of actuated deformable characters , 2013, ACM Trans. Graph..

[7]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[8]  Seonho Cho,et al.  Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh , 2008 .

[9]  J. Cea,et al.  The shape and topological optimizations connection , 2000 .

[10]  G. Allaire,et al.  Topology and geometry optimization of elastic structures by exact deformation of simplicial mesh , 2011 .

[11]  Jakob Andreas Bærentzen,et al.  Automatic balancing of 3D models , 2015, Comput. Aided Des..

[12]  GarreauStéphane,et al.  The Topological Asymptotic for PDE Systems , 2000 .

[13]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[14]  G. Allaire,et al.  Shape and topology optimization of the robust compliance via the level set method , 2008 .

[15]  Sorkine-HornungOlga,et al.  Make it stand , 2013 .

[16]  Olga Sorkine-Hornung,et al.  Designing unreinforced masonry models , 2013, ACM Trans. Graph..

[17]  Sylvain Lefebvre,et al.  Make it stand , 2013, ACM Trans. Graph..

[18]  Denis Zorin,et al.  Worst-case structural analysis , 2013, ACM Trans. Graph..

[19]  Chau H. Le,et al.  A gradient-based, parameter-free approach to shape optimization , 2011 .

[20]  Hang Si,et al.  TetGen: A quality tetrahedral mesh generator and a 3D Delaunay triangulator (Version 1.5 --- User's Manual) , 2013 .

[21]  Radomír Mech,et al.  Stress relief , 2012, ACM Trans. Graph..

[22]  T. Shi,et al.  A level set solution to the stress-based structural shape and topology optimization , 2012 .

[23]  Hang Si,et al.  TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator , 2015, ACM Trans. Math. Softw..

[24]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[25]  J. Shewchuk Two Discrete Optimization Algorithms for the Topological Improvement of Tetrahedral Meshes , 2002 .

[26]  D. A. Field Laplacian smoothing and Delaunay triangulations , 1988 .

[27]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[28]  Nobuyuki Umetani,et al.  Cross-sectional structural analysis for 3D printing optimization , 2013, SIGGRAPH ASIA Technical Briefs.

[29]  V. Parthasarathy,et al.  A comparison of tetrahedron quality measures , 1994 .

[30]  S. Yamasaki,et al.  A level set‐based topology optimization method targeting metallic waveguide design problems , 2011 .

[31]  Jakob Andreas Bærentzen,et al.  Topology-adaptive interface tracking using the deformable simplicial complex , 2012, TOGS.

[32]  Yunliang Ding,et al.  Shape optimization of structures: a literature survey , 1986 .

[33]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[34]  Johanna Weiss,et al.  Optimal Shape Design For Elliptic Systems , 2016 .

[35]  Philippe Guillaume,et al.  The Topological Asymptotic for PDE Systems: The Elasticity Case , 2000, SIAM J. Control. Optim..

[36]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[37]  V. Kobelev,et al.  Bubble method for topology and shape optimization of structures , 1994 .

[38]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[39]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[40]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[41]  Baining Guo,et al.  Computing self-supporting surfaces by regular triangulation , 2013, ACM Trans. Graph..

[42]  O. Sigmund,et al.  Topology optimization using an explicit interface representation , 2014 .

[43]  C. S. Jog,et al.  A new approach to variable-topology shape design using a constraint on perimeter , 1996 .

[44]  G. Gladwell,et al.  Solid mechanics and its applications , 1990 .

[45]  Jens Gravesen,et al.  Guide to Computational Geometry Processing: Foundations, Algorithms, and Methods , 2012 .

[46]  Kai-Uwe Bletzinger,et al.  Parameter free shape and thickness optimisation considering stress response , 2012 .

[47]  William R. Spillers,et al.  2 – Shape optimization of structures , 1985 .

[48]  E. Ramm,et al.  Adaptive topology optimization , 1995 .