Dielectric, ferroelectric and impedance spectroscopic study of Ta2O5, Sb2O5, and V2O5-doped AgNbO3 ceramic

[1]  Lei Yang,et al.  Enhancing the visible-light-induced photocatalytic activity of AgNbO3 by loading Ag@AgCl nanoparticles , 2015 .

[2]  R. Muduli,et al.  Electric and magnetic properties of Bi substituted cobalt ferrite nanoparticles: Evolution of grain effect , 2015 .

[3]  S. Kar,et al.  Dielectric relaxation and conduction mechanism of cobalt ferrite nanoparticles , 2014 .

[4]  S. Miga,et al.  Silver deficiency and excess effects on quality, dielectric properties and phase transitions of AgNbO3 ceramics , 2014 .

[5]  A. Garg,et al.  Suppression of grain boundary relaxation in Zr-doped BiFeO3 thin films , 2014 .

[6]  Jiaguo Yu,et al.  Effects of the preparation method on the structure and the visible-light photocatalytic activity of Ag2CrO4 , 2014, Beilstein journal of nanotechnology.

[7]  S. Balakumar,et al.  Role of oxygen vacancy and Fe-O-Fe bond angle in compositional, magnetic, and dielectric relaxation on Eu-substituted BiFeO(3) nanoparticles. , 2014, Dalton transactions.

[8]  D. Behera,et al.  Investigation of electric transport behavior of bulk CoFe2O4 by complex impedance spectroscopy , 2014 .

[9]  Ling Wu,et al.  Mechanism and improvement of the visible light photocatalysis of organic pollutants over microcrystalline AgNbO3 prepared by a sol–gel method , 2013 .

[10]  Hongming Yuan,et al.  Hydrothermal Syntheses and Structural Phase Transitions of AgNbO3 , 2012 .

[11]  Li Lingxia,et al.  Correlation between crystal structure and properties of ultra-high dielectric constant ceramics x SrCO3-Bi2O3-Ag(Nb,Ta)O3 , 2012, Journal of Electroceramics.

[12]  I. Reaney,et al.  The effect of Li-substitution on the M-phases of AgNbO3 , 2012 .

[13]  G. G. Gadzhiev,et al.  Phase transformations and properties of Ag1 − yNbO3 − y/2 (0 ≤ y ≤ 0.20) ceramics , 2011 .

[14]  S. Miga,et al.  Freezing of the Nb5 + ion dynamics in AgNbO3 studied by linear and nonlinear dielectric response , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  M. Itoh,et al.  Structure of Ferroelectric Silver Niobate AgNbO3 , 2011 .

[16]  Zheng Gu,et al.  Structural characterization and photocatalytic activity of NiO/AgNbO3 , 2010 .

[17]  M. Itoh,et al.  Dielectric, ferroelectric, and piezoelectric behaviors of AgNbO3-KNbO3 solid solution , 2009 .

[18]  Jinhua Ye,et al.  Synthesis and visible light photocatalytic property of polyhedron-shaped AgNbO3. , 2009, Dalton transactions.

[19]  J. Woicik,et al.  Structural changes underlying the diffuse dielectric response in AgNbO 3 , 2009 .

[20]  M. Xiao,et al.  Structural and Dielectric Properties of Ag(Nb0.8Ta0.2)1−xSbxO3 (x≤0.08) Ceramics , 2007 .

[21]  M. Itoh,et al.  AgNbO3: A lead-free material with large polarization and electromechanical response , 2007 .

[22]  Xing Hu,et al.  Phase transitions and dielectric properties of the Ag1−xBix∕3NbO3 system , 2006 .

[23]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[24]  D. Suvorov,et al.  New High-Permittivity AgNb1-xTaxO3 Microwave Ceramics: Part I, Crystal Structures and Phase-Decomposition Relations , 2004 .

[25]  D. Suvorov,et al.  New High‐Permittivity AgNb1‐xTaxO3 Microwave Ceramics: Part II, Dielectric Characteristics , 2004 .

[26]  E. Suard,et al.  Structural investigation of AgNbO3 phases using X-ray and neutron diffraction , 2004 .

[27]  S. Miga,et al.  Preparation and dielectric properties of Ag1-xLixNbO3 (ALN) solid solutions ceramics , 2001 .

[28]  G. Cao,et al.  Influences of vanadium doping on ferroelectric properties of strontium bismuth niobates , 2000 .

[29]  G. Cao,et al.  Enhanced ferroelectric properties and lowered processing temperatures of strontium bismuth niobates with vanadium doping , 1999 .

[30]  A. Kania,et al.  Manifestation of Nb dynamics in Raman, microwave, and infrared spectra of the AgTaO3‐AgNbO3 mixed system , 1996 .

[31]  Rosario A. Gerhardt,et al.  Impedance and dielectric spectroscopy revisited: Distinguishing localized relaxation from long-range conductivity , 1994 .

[32]  M. Fontana,et al.  Study of the phase transition sequence of mixed silver tantalate-niobate (AgTa1-xNbxO3) by inelastic light scattering , 1992 .

[33]  Darryl P Almond,et al.  Impedance and modulus spectroscopy of “real” dispersive conductors , 1983 .

[34]  N. Alford,et al.  Review of Ag(Nb, Ta)O3 as a functional material , 2007 .

[35]  H. Ogawa,et al.  Evaluation of electronic state of Mg4(Nb2−xSbx)O9 microwave dielectric ceramics by first principle calculation method , 2005 .

[36]  H. Ogawa,et al.  Crystal structure of corundum type Mg4(Nb2–xTax)O9 microwave dielectric ceramics with low dielectric loss , 2003 .