Some Formulas for Spin Models on Distance-Regular Graphs

A spin model is a square matrixWsatisfying certain conditions which ensure that it yields an invariant of knots and links via a statistical mechanical construction of V. F. R. Jones. Recently F. Jaeger gave a topological construction for each spin modelWof an association scheme which containsWin its Bose?Mesner algebra. Shortly thereafter, K. Nomura gave a simple algebraic construction of such a Bose?Mesner algebraN(W). In this paper we study the caseW?A?N(W), where A is the Bose?Mesner algebra of a distance-regular graph. We show the following results. Let?=(X,R) be a distance-regular graph of diameterd>1 such that the Bose?Mesner algebra A of?satisfiesW?A?N(W) for some spin modelWonX. WriteW=?di=0tiAi, whereAidenotes theith adjacency matrix. Setxi=t?1i?1tiandp=x?11x2. Thenxi=pi?1x1holds for alli. Moreover, the eigenvalues and the intersection numbers of?are rational functions ofx1andp.

[1]  K. Nomura,et al.  Spin Models on Bipartite Distance-Regular Graphs , 1995, J. Comb. Theory, Ser. B.

[2]  Brian Curtin,et al.  2-Homogeneous bipartite distance-regular graphs , 1998, Discret. Math..

[3]  Kazumasa Nomura Spin Models on Triangle-Free Connected Graphs , 1996, J. Comb. Theory, Ser. B.

[4]  Kazumasa Nomura,et al.  Spin Models and Almost Bipartite 2-Homogeneous Graphs , 1996 .

[5]  S. S. Shrikhande,et al.  The Uniqueness of the $\mathrm{L}_2$ Association Scheme , 1959 .

[6]  Pierre de la Harpe,et al.  Spin models for link polynomials, strongly regular graphs and Jaeger's Higman-Sims model. , 1994 .

[7]  Andries E. Brouwer On the uniqueness of a certain thin near octagon (or partial 2-geometry, or parallelism) derived from the binary Golay code , 1983, IEEE Trans. Inf. Theory.

[8]  Eiichi Bannai,et al.  On Spin Models, Modular Invariance, and Duality , 1997 .

[9]  Kazumasa Nomura,et al.  An Algebra Associated with a Spin Model , 1997 .

[10]  F. Jaeger Towards a Classification of Spin Models in terms of Association Schemes , 1996 .

[11]  Eiichi Bannai,et al.  Generalized generalized spin models (four-weight spin models) , 1995 .

[12]  CLASSIFICATION OF SMALL SPIN MODELS , 1994 .

[13]  Hikoe Enomoto Characterization of families of finite permutation groups by the subdegrees. I , 1972 .

[14]  Paul M. Terwilliger Kite-free distance-regular graphs , 1995, Eur. J. Comb..

[15]  François Jaeger,et al.  Strongly regular graphs and spin models for the Kauffman polynomial , 1992 .

[16]  François Jaeger,et al.  On Spin Models, Triply Regular Association Schemes, and Duality , 1995 .

[17]  Yoshimi Egawa,et al.  Characterization of H(n, q) by the Parameters , 1981, J. Comb. Theory, Ser. A.

[18]  François Jaeger,et al.  New constructions of models for link invariants , 1996 .

[19]  A. Neumaier,et al.  Distance Regular Graphs , 1989 .

[20]  Modular invariance property and spin models attached to cyclic group association schemes , 1996 .

[21]  Brian Curtin Distance-regular graphs which support a spin model are thin , 1999 .

[22]  Dennis Stanton,et al.  A matrix equation for association schemes , 1995, Graphs Comb..

[23]  Kazumasa Nomura,et al.  Bose-Mesner Algebras Related to Type II Matrices and Spin Models , 1998 .

[24]  K. Nomura,et al.  Spin Models Constructed from Hadamard Matrices , 1994, J. Comb. Theory, Ser. A.

[25]  Vaughan F. R. Jones,et al.  On knot invariants related to some statistical mechanical models , 1989 .

[26]  Eiichi Bannai,et al.  Spin Models on Finite Cyclic Groups , 1994 .