High‐gain stabilization for an axially moving beam under boundary feedback control

This paper establishes the global existence and high‐gain stabilization of a nonlinear axially moving beam with control input at the free boundary. A high‐gain controller based on the transverse velocity feedbacks of the moving beam at the free end is designed. The existence and uniqueness of the solution depending on the initial values continuously for the resulting closed‐loop system are established by invoking the Faedo–Galerkin approximation approach. Then constructing a novel energy‐like function, the explicit exponential decay rate of the closed‐loop system is obtained via a generalized Gronwall‐type integral inequality.

[1]  B. Guo,et al.  Boundary Stability Criterion for a Nonlinear Axially Moving Beam , 2022, IEEE Transactions on Automatic Control.

[2]  B. Guo,et al.  Boundary stabilization for axially moving Kirchhoff string under fractional PI control , 2022 .

[3]  N. Tatar,et al.  On global adaptive stabilization of a Kirchhoff moving string with variable density , 2022, Mathematical Methods in the Applied Sciences.

[4]  Jamilu Hashim Hassan,et al.  Adaptive stabilization of a Timoshenko system by boundary feedback controls , 2021, Mathematical Methods in the Applied Sciences.

[5]  N. Tatar,et al.  Adaptive boundary stabilization of a nonlinear axially moving string , 2021, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik.

[6]  Xi-Ming Sun,et al.  Vibration Control of Conveying Fluid Pipe Based on Inerter Enhanced Nonlinear Energy Sink , 2021, IEEE Transactions on Circuits and Systems I: Regular Papers.

[7]  Xi-Ming Sun,et al.  Stability analysis of a pipe conveying fluid with a nonlinear energy sink , 2021, Science China Information Sciences.

[8]  N. Tatar,et al.  Adaptive Stabilization of a Kirchhoff Moving String , 2020, Journal of Dynamical and Control Systems.

[9]  Keum-Shik Hong,et al.  Dynamic models of axially moving systems: A review , 2020 .

[10]  Shuzhi Sam Ge,et al.  Unified iterative learning control for flexible structures with input constraints , 2018, Autom..

[11]  Keum Shik Hong,et al.  Active vibration control of a flexible rod moving in water: Application to nuclear refueling machines , 2018, Autom..

[12]  Yao Yu,et al.  Modeling and vibration control of the flapping-wing robotic aircraft with output constraint , 2018, Journal of Sound and Vibration.

[13]  Lassi Paunonen,et al.  Approximate Robust Output Regulation of Boundary Control Systems , 2017, IEEE Transactions on Automatic Control.

[14]  N. Tatar,et al.  Control and exponential stabilization for the equation of an axially moving viscoelastic strip , 2017 .

[15]  Andreas Kugi,et al.  Stability of an Euler-Bernoulli Beam With a Nonlinear Dynamic Feedback System , 2015, IEEE Transactions on Automatic Control.

[16]  Bao-Zhu Guo,et al.  Lyapunov approach to output feedback stabilization for the Euler-Bernoulli beam equation with boundary input disturbance , 2015, Autom..

[17]  Li-Qun Chen,et al.  Galerkin methods for natural frequencies of high-speed axially moving beams , 2010 .

[18]  Toshihiro Kobayashi,et al.  Adaptive stabilization of a Kirchhoff’s non-linear beam with output disturbances , 2009 .

[19]  Liqun Chen,et al.  On two transverse nonlinear models of axially moving beams , 2009 .

[20]  Miroslav Krstic,et al.  Adaptive Boundary Control for Unstable Parabolic PDEs—Part I: Lyapunov Design , 2008, IEEE Transactions on Automatic Control.

[21]  Miroslav Krstic,et al.  Control of a Tip-Force Destabilized Shear Beam by Observer-Based Boundary Feedback , 2008, SIAM J. Control. Optim..

[22]  Jun-feng Li,et al.  Stabilization analysis of a generalized nonlinear axially moving string by boundary velocity feedback , 2008, Autom..

[23]  Bao-Zhu Guo,et al.  Adaptive stabilization for a Kirchhoff-type nonlinear beam under boundary output feedback control , 2007 .

[24]  Liqun Chen,et al.  Adaptive vibration reduction of an axially moving string via a tensioner , 2006 .

[25]  Zhichao Hou,et al.  Exponential stabilization of an axially moving string with geometrical nonlinearity by linear boundary feedback , 2006 .

[26]  Fumitoshi Matsuno,et al.  Robust boundary control of an axially moving string by using a PR transfer function , 2005, IEEE Transactions on Automatic Control.

[27]  Darren M. Dawson,et al.  Speed tracking and transverse vibration control of an axially accelerating web , 2002 .

[28]  Jyh-Horng Chou,et al.  Optimal Boundary Control of an Axially Moving Material System , 2002 .

[29]  Toshihiro Kobayashi,et al.  Adaptive Regulator Design for a Class of Infinite-Dimensional Second-Order Systems☆ , 2001 .

[30]  K. Gu Stability and Stabilization of Infinite Dimensional Systems with Applications , 1999 .

[31]  J. Wickert Non-linear vibration of a traveling tensioned beam , 1992 .

[32]  R. Nussbaum Some remarks on a conjecture in parameter adaptive control , 1983 .

[33]  Bao-Zhu Guo,et al.  Absolute boundary stabilization for an axially moving Kirchhoff beam , 2021, Autom..

[34]  Liqun Chen,et al.  Nonlinear Models for Transverse Forced Vibration of Axially Moving Viscoelastic Beams , 2011 .

[35]  Shuzhi Sam Ge,et al.  Robust Adaptive Boundary Control of a Vibrating String Under Unknown Time-Varying Disturbance , 2010, IEEE Transactions on Control Systems Technology.

[36]  M. Krstić,et al.  Boundary Control of PDEs , 2008 .

[37]  M. Krstić Boundary Control of PDEs: A Course on Backstepping Designs , 2008 .

[38]  Keum-Shik Hong,et al.  ROBUST BOUNDARY CONTROL OF AN AXIALLY MOVING STEEL STRIP , 2002 .

[39]  Achim Ilchmann,et al.  Non-identifier-based adaptive control of dynamical systems: a survey , 1991 .

[40]  Martin Corless,et al.  Simple Adaptive Controllers for Systems which are Stabilizable via High Gain Feedback , 1991 .