RBF-PU method for pricing options under the jump-diffusion model with local volatility

Abstract Meshfree methods based on radial basis functions (RBFs) are of general interest for solving partial differential equations (PDEs) because they can provide high order or spectral convergence for smooth solutions in complex geometries. For global RBF methods, one of the major disadvantages is the computational cost associated with the dense linear systems that arise. Therefore, this paper is currently directed toward localized RBF approximations known as the RBF partition of unity (RBF-PU) method for partial integro-differential equation (PIDE) arisen in option pricing problems in jump–diffusion model. RBF-PU method produces algebraic systems with sparse matrices which have small condition number. Also, for comparison, some stable time discretization schemes are combined with the operator splitting method to get a fully discrete problem. Numerical examples are presented to illustrate the convergence and stability of the proposed algorithms for pricing European and American options with Merton and Kou models.

[1]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[2]  Elisabeth Larsson,et al.  A Radial Basis Function Partition of Unity Collocation Method for Convection–Diffusion Equations Arising in Financial Applications , 2015, J. Sci. Comput..

[3]  Luca Vincenzo Ballestra,et al.  Computing the survival probability density function in jump-diffusion models: A new approach based on radial basis functions , 2011 .

[4]  Jari Toivanen,et al.  An Iterative Method for Pricing American Options Under Jump-Diffusion Models , 2011 .

[5]  Piecewise Polynomial , 2014, Computer Vision, A Reference Guide.

[6]  R. Mollapourasl,et al.  Radial Basis Functions with Partition of Unity Method for American Options with Stochastic Volatility , 2019 .

[7]  Hengguang Li,et al.  A Local Radial Basis Function Method for Pricing Options Under the Regime Switching Model , 2019, J. Sci. Comput..

[8]  Kailash C. Patidar,et al.  Contour integral method for European options with jumps , 2013, Commun. Nonlinear Sci. Numer. Simul..

[9]  Kailash C. Patidar,et al.  Robust spectral method for numerical valuation of european options under Merton's jump-diffusion model , 2014 .

[10]  Frank Cuypers Tools for Computational Finance , 2003 .

[11]  G. Papanicolaou,et al.  Derivatives in Financial Markets with Stochastic Volatility , 2000 .

[12]  Cornelis W. Oosterlee,et al.  Numerical valuation of options with jumps in the underlying , 2005 .

[13]  Holger Wendland,et al.  Fast evaluation of radial basis functions : methods based on partition of unity , 2002 .

[14]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[15]  Willem Hundsdorfer,et al.  Stability of implicit-explicit linear multistep methods , 1997 .

[16]  George Labahn,et al.  A penalty method for American options with jump diffusion processes , 2004, Numerische Mathematik.

[17]  Zongmin Wu,et al.  Convergence error estimate in solving free boundary diffusion problem by radial basis functions method , 2003 .

[18]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[19]  Luca Vincenzo Ballestra,et al.  A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications , 2012 .

[20]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[21]  Jari Toivanen,et al.  IMEX schemes for pricing options under jump-diffusion models , 2014 .

[22]  Leif Andersen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing , 2000 .

[23]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[24]  P. Forsyth,et al.  Robust numerical methods for contingent claims under jump diffusion processes , 2005 .

[25]  Jari Toivanen,et al.  Operator splitting methods for American option pricing , 2004, Appl. Math. Lett..

[26]  Roberto Cavoretto,et al.  Spherical interpolation using the partition of unity method: An efficient and flexible algorithm , 2012, Appl. Math. Lett..

[27]  Roberto Cavoretto,et al.  A meshless interpolation algorithm using a cell-based searching procedure , 2014, Comput. Math. Appl..

[28]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[29]  R. Schaback A unified theory of radial basis functions Native Hilbert spaces for radial basis functions II , 2000 .

[30]  Jari Toivanen,et al.  Comparison and survey of finite difference methods for pricing American options under finite activity jump-diffusion models , 2012, Int. J. Comput. Math..

[31]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[32]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[33]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[34]  Kai Zhang,et al.  Pricing options under jump diffusion processes with fitted finite volume method , 2008, Appl. Math. Comput..

[35]  Rama Cont,et al.  A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models , 2005, SIAM J. Numer. Anal..

[36]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[37]  Luca Vincenzo Ballestra,et al.  Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach , 2013 .

[38]  G. Fasshauer,et al.  Using meshfree approximation for multi‐asset American options , 2004 .

[39]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[40]  C. Schwab,et al.  Wavelet Galerkin pricing of American options on Lévy driven assets , 2005 .

[41]  Cornelis W. Oosterlee,et al.  Pricing early-exercise and discrete barrier options by fourier-cosine series expansions , 2009, Numerische Mathematik.

[42]  R. Lord,et al.  A Fast and Accurate FFT-Based Method for Pricing Early-Exercise Options Under Levy Processes , 2007 .

[43]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[44]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[45]  G. Russo,et al.  Implicit–explicit numerical schemes for jump–diffusion processes , 2007 .

[46]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[47]  Nicholas G. Polson,et al.  Evidence for and the Impact of Jumps in Volatility and Returns , 2001 .

[48]  Cornelis W. Oosterlee,et al.  A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions , 2008, SIAM J. Sci. Comput..

[49]  Jari Toivanen,et al.  Numerical Valuation of European and American Options under Kou's Jump-Diffusion Model , 2008, SIAM J. Sci. Comput..

[50]  Mohan K. Kadalbajoo,et al.  Second Order Accurate IMEX Methods for Option Pricing Under Merton and Kou Jump-Diffusion Models , 2015, J. Sci. Comput..

[51]  Younhee Lee,et al.  A Second-order Finite Difference Method for Option Pricing Under Jump-diffusion Models , 2011, SIAM J. Numer. Anal..