RBF-PU method for pricing options under the jump-diffusion model with local volatility
暂无分享,去创建一个
Xun Lu | Hengguang Li | Reza Mollapourasl | Ali Fereshtian | Hengguang Li | R. Mollapourasl | Ali Fereshtian | Xun Lu
[1] F. Black,et al. The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.
[2] Elisabeth Larsson,et al. A Radial Basis Function Partition of Unity Collocation Method for Convection–Diffusion Equations Arising in Financial Applications , 2015, J. Sci. Comput..
[3] Luca Vincenzo Ballestra,et al. Computing the survival probability density function in jump-diffusion models: A new approach based on radial basis functions , 2011 .
[4] Jari Toivanen,et al. An Iterative Method for Pricing American Options Under Jump-Diffusion Models , 2011 .
[5] Piecewise Polynomial , 2014, Computer Vision, A Reference Guide.
[6] R. Mollapourasl,et al. Radial Basis Functions with Partition of Unity Method for American Options with Stochastic Volatility , 2019 .
[7] Hengguang Li,et al. A Local Radial Basis Function Method for Pricing Options Under the Regime Switching Model , 2019, J. Sci. Comput..
[8] Kailash C. Patidar,et al. Contour integral method for European options with jumps , 2013, Commun. Nonlinear Sci. Numer. Simul..
[9] Kailash C. Patidar,et al. Robust spectral method for numerical valuation of european options under Merton's jump-diffusion model , 2014 .
[10] Frank Cuypers. Tools for Computational Finance , 2003 .
[11] G. Papanicolaou,et al. Derivatives in Financial Markets with Stochastic Volatility , 2000 .
[12] Cornelis W. Oosterlee,et al. Numerical valuation of options with jumps in the underlying , 2005 .
[13] Holger Wendland,et al. Fast evaluation of radial basis functions : methods based on partition of unity , 2002 .
[14] Steven Kou,et al. A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..
[15] Willem Hundsdorfer,et al. Stability of implicit-explicit linear multistep methods , 1997 .
[16] George Labahn,et al. A penalty method for American options with jump diffusion processes , 2004, Numerische Mathematik.
[17] Zongmin Wu,et al. Convergence error estimate in solving free boundary diffusion problem by radial basis functions method , 2003 .
[18] M. Yor,et al. The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .
[19] Luca Vincenzo Ballestra,et al. A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications , 2012 .
[20] Martin D. Buhmann,et al. Radial Basis Functions: Theory and Implementations: Preface , 2003 .
[21] Jari Toivanen,et al. IMEX schemes for pricing options under jump-diffusion models , 2014 .
[22] Leif Andersen,et al. Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing , 2000 .
[23] Martin D. Buhmann,et al. Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.
[24] P. Forsyth,et al. Robust numerical methods for contingent claims under jump diffusion processes , 2005 .
[25] Jari Toivanen,et al. Operator splitting methods for American option pricing , 2004, Appl. Math. Lett..
[26] Roberto Cavoretto,et al. Spherical interpolation using the partition of unity method: An efficient and flexible algorithm , 2012, Appl. Math. Lett..
[27] Roberto Cavoretto,et al. A meshless interpolation algorithm using a cell-based searching procedure , 2014, Comput. Math. Appl..
[28] R. Cont,et al. Financial Modelling with Jump Processes , 2003 .
[29] R. Schaback. A unified theory of radial basis functions Native Hilbert spaces for radial basis functions II , 2000 .
[30] Jari Toivanen,et al. Comparison and survey of finite difference methods for pricing American options under finite activity jump-diffusion models , 2012, Int. J. Comput. Math..
[31] David S. Bates. Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .
[32] Holger Wendland,et al. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..
[33] I. Babuska,et al. The Partition of Unity Method , 1997 .
[34] Kai Zhang,et al. Pricing options under jump diffusion processes with fitted finite volume method , 2008, Appl. Math. Comput..
[35] Rama Cont,et al. A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models , 2005, SIAM J. Numer. Anal..
[36] R. C. Merton,et al. Option pricing when underlying stock returns are discontinuous , 1976 .
[37] Luca Vincenzo Ballestra,et al. Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach , 2013 .
[38] G. Fasshauer,et al. Using meshfree approximation for multi‐asset American options , 2004 .
[39] Steven J. Ruuth,et al. Implicit-explicit methods for time-dependent partial differential equations , 1995 .
[40] C. Schwab,et al. Wavelet Galerkin pricing of American options on Lévy driven assets , 2005 .
[41] Cornelis W. Oosterlee,et al. Pricing early-exercise and discrete barrier options by fourier-cosine series expansions , 2009, Numerische Mathematik.
[42] R. Lord,et al. A Fast and Accurate FFT-Based Method for Pricing Early-Exercise Options Under Levy Processes , 2007 .
[43] Gregory E. Fasshauer,et al. Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.
[44] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.
[45] G. Russo,et al. Implicit–explicit numerical schemes for jump–diffusion processes , 2007 .
[46] Holger Wendland,et al. Scattered Data Approximation: Conditionally positive definite functions , 2004 .
[47] Nicholas G. Polson,et al. Evidence for and the Impact of Jumps in Volatility and Returns , 2001 .
[48] Cornelis W. Oosterlee,et al. A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions , 2008, SIAM J. Sci. Comput..
[49] Jari Toivanen,et al. Numerical Valuation of European and American Options under Kou's Jump-Diffusion Model , 2008, SIAM J. Sci. Comput..
[50] Mohan K. Kadalbajoo,et al. Second Order Accurate IMEX Methods for Option Pricing Under Merton and Kou Jump-Diffusion Models , 2015, J. Sci. Comput..
[51] Younhee Lee,et al. A Second-order Finite Difference Method for Option Pricing Under Jump-diffusion Models , 2011, SIAM J. Numer. Anal..