Geometric rigidity of conformal matrices

We provide a geometric rigidity estimate a la Friesecke-James-Muller for conformal matrices. Namely, we replace SO(n) by a arbitrary compact subset of conformal matrices, bounded away from 0 and invariant under SO(n), and rigid motions by Mobius transformations.

[1]  Richard D. James,et al.  Rigorous derivation of nonlinear plate theory and geometric rigidity , 2002 .

[2]  P. Koskela GEOMETRIC FUNCTION THEORY AND NON-LINEAR ANALYSIS (Oxford Mathematical Monographs) By TADEUSZ IWANIEC and GAVEN MARTIN: 552 pp., £75.00, ISBN 0-19-85029-4 (Oxford University Press, 2001) , 2002 .

[3]  J. Heinonen,et al.  Nonlinear Potential Theory of Degenerate Elliptic Equations , 1993 .

[4]  Tadeusz Iwaniec,et al.  Geometric Function Theory and Non-linear Analysis , 2002 .

[5]  M. G. Mora,et al.  Derivation of the nonlinear bending-torsion theory for inextensible rods by $\Gamma$-convergence , 2003 .

[6]  RINGS AND QUASICONFORMAL MAPPINGS IN SPACE. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[7]  N. Lloyd,et al.  A survey of degree theory: Basis and development , 1983 .

[8]  Tadeusz Iwaniec,et al.  Quasiregular mappings in even dimensions , 1993 .

[9]  A. Beardon The Geometry of Discrete Groups , 1995 .

[10]  S. Müller,et al.  Rigidity estimate for two incompatible wells , 2004 .

[11]  F. John Rotation and strain , 1961 .

[12]  P. Koskela,et al.  Mappings of finite distortion: Reverse inequalities for the Jacobian , 2007 .

[13]  M. Negri,et al.  Linearized Elasticity as Γ-Limit of Finite Elasticity , 2002 .

[14]  Yu. G. Reshetnyak Estimates for certain differential operators with finite-dimensional kernel , 1970 .

[15]  I︠U︡riĭ Grigorʹevich Reshetni︠a︡k Stability theorems in geometry and analysis , 1994 .

[16]  S. Müller,et al.  A nonlinear model for inextensible rods as a low energy Γ-limit of three-dimensional nonlinear elasticity , 2004 .

[17]  Maria Giovanna Mora,et al.  Mathematik in den Naturwissenschaften Leipzig Derivation of nonlinear bending theory for shells from three dimensional nonlinear elasticity by Gamma-convergence by , 2003 .

[18]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[19]  G. Friesecke,et al.  A theorem on geometric rigidity and the derivation of nonlinear plate theory from three‐dimensional elasticity , 2002 .

[20]  Tadeusz Iwaniec,et al.  $p$-harmonic tensors and quasiregular mappings , 1992 .