, Ranit Aharonov , Yaakov Engel , Binyamin of the Octopus Reaching Movement Dynamic Model of the Octopus Arm

[PDF] [Full Text] , November 1, 2005; 208 (21): iv. J Exp Biol Laura Blackburn AGILE ANIMALS [PDF] [Full Text] [Abstract] , October 1, 2006; 209 (19): 3697-3707. J Exp Biol Christine L. Huffard between primary and secondary defenses (Cephalopoda: Octopodidae): walking the line Abdopus aculeatus Locomotion by [PDF] [Full Text] [Abstract] , September 1, 2007; 98 (3): 1775-1790. J Neurophysiol Yoram Yekutieli, Rea Mitelman, Binyamin Hochner and Tamar Flash Analyzing Octopus Movements Using Three-Dimensional Reconstruction [PDF] [Full Text] [Abstract] , December 1, 2007; 210 (23): 4069-4082. J Exp Biol Richard J. Gilbert, Vitaly J. Napadow, Terry A. Gaige and Van J. Wedeen Anatomical basis of lingual hydrostatic deformation [PDF] [Full Text] [Abstract] , November , 2010; 109 (5): 1500-1514. J Appl Physiol Richard J. Gilbert Srboljub M. Mijailovich, Boban Stojanovic, Milos Kojic, Alvin Liang, Van J. Wedeen and mechanics of mesoscale myofiber tracts obtained by MRI Derivation of a finite-element model of lingual deformation during swallowing from the

[1]  J. Lowy,et al.  Mechanical properties of smooth muscles of cephalopod molluscs , 1962, The Journal of physiology.

[2]  S. Vogel Life in Moving Fluids: The Physical Biology of Flow , 1981 .

[3]  T. Flash,et al.  The coordination of arm movements: an experimentally confirmed mathematical model , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  W. Kier,et al.  Tongues, tentacles and trunks: the biomechanics of movement in muscular‐hydrostats , 1985 .

[5]  W. Kier,et al.  The arrangement and function of molluscan muscle , 1988 .

[6]  L. Shampine,et al.  A 3(2) pair of Runge - Kutta formulas , 1989 .

[7]  F. Zajac Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. , 1989, Critical reviews in biomedical engineering.

[8]  W. Beyn,et al.  Computer simulation of the hydrostatic skeleton. The physical equivalent, mathematics and application to worm-like forms. , 1989, Journal of theoretical biology.

[9]  J. Wilson,et al.  A continuum model of elephant trunks. , 1991, Journal of biomechanical engineering.

[10]  A. A. Biewener,et al.  Biomechanics-- structures and systems : a practical approach , 1992 .

[11]  C. E. Jordan A MODEL OF RAPID-START SWIMMING AT INTERMEDIATE REYNOLDS NUMBER: UNDULATORY LOCOMOTION IN THE CHAETOGNATH SAGITTA ELEGANS , 1992 .

[12]  J. Burdick,et al.  Experimental Results of Sensor Based Planning for Hyper-redundant Manipulators , 1993 .

[13]  Gregory S. Chirikjian,et al.  A modal approach to hyper-redundant manipulator kinematics , 1994, IEEE Trans. Robotics Autom..

[14]  C. E. Jordan Coupling Internal and External Mechanics to Predict Swimming Behavior: A General Approach , 1996 .

[15]  W. Kristan,et al.  A model of the hydrostatic skeleton of the leech. , 1996, Journal of theoretical biology.

[16]  Y Gutfreund,et al.  Organization of Octopus Arm Movements: A Model System for Studying the Control of Flexible Arms , 1996, The Journal of Neuroscience.

[17]  W. Kier,et al.  Functional design of tentacles in squid : Linking sarcomere ultrastructure to gross morphological dynamics , 1997 .

[18]  Y. Engel,et al.  A dynamical model of the octopus arm , 1997, Neuroscience Letters.

[19]  Curtin,et al.  Contractile properties of obliquely striated muscle from the mantle of squid (Alloteuthis subulata) and cuttlefish (Sepia officinalis) , 1997, The Journal of experimental biology.

[20]  B. Hochner,et al.  Patterns of Arm Muscle Activation Involved in Octopus Reaching Movements , 1998, The Journal of Neuroscience.

[21]  P. Crago,et al.  Kinematic models of the buccal mass of Aplysia californica. , 1998, The Journal of experimental biology.

[22]  Sung-Nien Yu,et al.  Biomechanical properties and a kinetic simulation model of the smooth muscle I2 in the buccal mass of Aplysia , 1999, Biological Cybernetics.

[23]  T. Papanastasiou,et al.  Viscous Fluid Flow , 1999 .

[24]  I. Walker Some Issues in Creating ‘ Invertebrate ’ Robots , 2000 .

[25]  B. Hochner,et al.  Neuromuscular system of the flexible arm of the octopus: physiological characterization. , 2000, Journal of neurophysiology.

[26]  N. Curtin,et al.  Energy storage by passive elastic structures in the mantle of sepia officinalis. , 2000, The Journal of experimental biology.

[27]  B. Hochner,et al.  Control of Octopus Arm Extension by a Peripheral Motor Program , 2001, Science.

[28]  W. Kier,et al.  Fast muscle in squid (Loligo pealei): contractile properties of a specialized muscle fibre type. , 2002, The Journal of experimental biology.

[29]  P. Crago,et al.  A kinematic model of swallowing in Aplysia californica based on radula/odontophore kinematics and in vivo magnetic resonance images. , 2002, The Journal of experimental biology.

[30]  Elizabeth V. Mangan,et al.  Radula-centric and odontophore-centric kinematic models of swallowing in Aplysia californica. , 2002, The Journal of experimental biology.

[31]  Wolf-Jürgen Beyn,et al.  Simulating the motion of the leech: A biomechanical application of DAEs , 1998, Numerical Algorithms.

[32]  Joseph M. Mansour,et al.  Biomechanics of a muscular hydrostat: a model of lapping by a reptilian tongue , 1992, Biological Cybernetics.

[33]  Örjan Ekeberg,et al.  A combined neuronal and mechanical model of fish swimming , 2005, Biological Cybernetics.

[34]  Tamar Flash,et al.  Dynamic model of the octopus arm. II. Control of reaching movements. , 2005, Journal of neurophysiology.