Synthesis and Conformational Properties of Nonsymmetric Pillar[5]arenes and Their Acetonitrile Inclusion Compounds

The catalytic cyclocondensation of 1-butoxy-4-methoxy-2,5-bis(methoxymethyl)benzene (1d) affords a statistical mixture of the regioisomeric pillar[5]arenes 3a–d in high yield. The alkoxy groups are arranged stereoselectively in a mode so that they avoid steric interactions. The rotation of the benzene rings is, at room temperature, fast in terms of the NMR timescale and leads to a de facto Cs symmetry for 3a–c and a C5h symmetry for 3d. All four structural isomers can encapsulate two CH3CN guest molecules. The structure determinations are based on four crystal structure analyses (constitutions) and NMR spectroscopic measurements (conformations).

[1]  T. Ogoshi,et al.  Synthesis and conformational characteristics of nonsymmetric pillar[5]arene. , 2010, Organic letters.

[2]  H. Meier,et al.  Eine leichte und effiziente Herstellung von Pillararenen und einem Pillarchinon , 2009 .

[3]  T. Ogoshi,et al.  Through-space pi-delocalized Pillar[5]arene. , 2009, Chemical communications.

[4]  G. Konishi Precision Polymerization of Designed Phenol: New Aspects of Phenolic Resin Chemistry , 2008 .

[5]  Yoshiaki Nakamoto,et al.  para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. , 2008, Journal of the American Chemical Society.

[6]  Lyle Isaacs,et al.  Die Cucurbit[n]uril‐Familie , 2005 .

[7]  Hong Wang,et al.  Polyamide Pseudorotaxanes, Rotaxanes, and Catenanes Based on Bis(5-carboxy-1,3-phenylene)-(3x+2)-crown-x Ethers , 2004 .

[8]  Alshakim Nelson,et al.  A self-assembled multivalent pseudopolyrotaxane for binding galectin-1. , 2004, Journal of the American Chemical Society.

[9]  Jae Wook Lee,et al.  Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. , 2003, Accounts of chemical research.

[10]  H. Gibson,et al.  Supramolecular pseudorotaxane polymers from complementary pairs of homoditopic molecules. , 2003, Journal of the American Chemical Society.

[11]  David J. Williams,et al.  Post-assembly processing of [2]rotaxanes. , 2002, Chemistry.

[12]  M. Komiyama,et al.  Spectroscopic anatomy of molecular-imprinting of cyclodextrin. Evidence for preferential formation of ordered cyclodextrin assemblies. , 2002, Journal of the American Chemical Society.

[13]  A. Harada,et al.  Cyclodextrin-based molecular machines. , 2001, Accounts of chemical research.

[14]  Y. Inoue,et al.  Complexation Thermodynamics of Cyclodextrins. , 1998, Chemical reviews.

[15]  Atsushi Ikeda,et al.  Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding. , 1997, Chemical reviews.

[16]  A. Harada Design and Construction of Supramolecular Architectures Consisting of Cyclodextrins and Polymers , 1997 .

[17]  V. Böhmer Calixarene – Makrocyclen mit (fast) unbegrenzten Möglichkeiten , 1995 .

[18]  R. Rathore,et al.  Selective nitration versus oxidative dealkylation of hydroquinone ethers with nitrogen dioxide , 1994 .

[19]  J. Gallagher,et al.  Mesitylene-derived 1,3-alternate [1.1.1.1]metacyclophanes , 1992 .

[20]  Akira Harada,et al.  The molecular necklace: a rotaxane containing many threaded α-cyclodextrins , 1992, Nature.

[21]  Hong-Ku Shim,et al.  Highly-conducting poly(2-n-butoxy-5-methoxy-1,4-phenylene vinylene) , 1989 .

[22]  G. Gribble,et al.  [1.1.1.1.1]paracyclophane and [1.1.1.1.1.1]paracyclophane , 1985 .