Orbits of the Bernoulli measure in single-transition asynchronous cellular automata
暂无分享,去创建一个
[1] Petr Kurka,et al. Dynamics of Cellular Automata in Non-compact Spaces , 2009, Encyclopedia of Complexity and Systems Science.
[2] Henryk Fuks,et al. Dynamics of the Cellular Automaton Rule 142 , 2006, Complex Syst..
[3] Pablo A. Ferrari,et al. Invariant Measures and Convergence Properties for Cellular Automaton 184 and Related Processes , 2005 .
[4] Alejandro Maass,et al. Limit Sets of Cellular Automata Associated to Probability Measures , 2000 .
[5] Michael Blank. Ergodic Properties of a Simple Deterministic Traffic Flow Model , 2002 .
[6] Henryk Fuks. Probabilistic initial value problem for cellular automaton rule 172 , 2010, Automata.
[7] Jonathan D. Victor,et al. Local structure theory for cellular automata , 1987 .
[8] Nazim Fatès,et al. An Experimental Study of Robustness to Asynchronism for Elementary Cellular Automata , 2004, Complex Syst..
[9] H Fukś,et al. Exact results for deterministic cellular automata traffic models. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[10] Petr Kůrka. On the measure attractor of a cellular automaton , 2005 .
[11] Petr Kurka. Topological Dynamics of Cellular Automata , 2009, Encyclopedia of Complexity and Systems Science.
[12] Siamak Taati,et al. Conservation Laws in Cellular Automata , 2009, Handbook of Natural Computing.
[13] Marcus Pivato,et al. The ergodic theory of cellular automata , 2012, Int. J. Gen. Syst..
[14] Nazim Fatès,et al. Asynchronous Behavior of Double-Quiescent Elementary Cellular Automata , 2006, LATIN.