Topological characterization of quantum phase transitions in a spin-1/2 model.
暂无分享,去创建一个
We have introduced a novel Majorana representation of S=1/2 spins using the Jordan-Wigner transformation and have shown that a generalized spin model of Kitaev defined on a brick-wall lattice is equivalent to a model of noninteracting Majorana fermions with Z2 gauge fields without redundant degrees of freedom. The quantum phase transitions of the system at zero temperature are found to be of topological type and can be characterized by nonlocal string order parameters (SOP). In appropriate dual representations, these SOP become local order parameters and the basic concept of Landau theory of continuous phase transition can be applied.
[1] X. Wen. Quantum Field Theory of Many-body Systems: From the Origin of Sound to an Origin of Light and Electrons , 2004 .
[2] G. Volovik,et al. The Universe in a Helium Droplet , 2003 .
[3] S. Sachdev. Quantum Phase Transitions , 1999 .