Topology and prediction of RNA pseudoknots
暂无分享,去创建一个
Christian M. Reidys | Peter F. Stadler | Markus E. Nebel | Fenix W. D. Huang | Robert C. Penner | Jørgen Ellegaard Andersen | P. Stadler | C. Reidys | M. Nebel | R. Penner | J. Andersen | F. Huang
[1] M. Zuker. On finding all suboptimal foldings of an RNA molecule. , 1989, Science.
[2] Tatsuya Akutsu,et al. Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots , 2000, Discret. Appl. Math..
[3] Christian M. Reidys,et al. Target prediction and a statistical sampling algorithm for RNA–RNA interaction , 2009, Bioinform..
[4] Christian N. S. Pedersen,et al. RNA Pseudoknot Prediction in Energy-Based Models , 2000, J. Comput. Biol..
[5] David I. Stuart,et al. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting , 2006, Nature.
[6] Satoshi Kobayashi,et al. Tree Adjoining Grammars for RNA Structure Prediction , 1999, Theor. Comput. Sci..
[7] C. Lawrence,et al. A statistical sampling algorithm for RNA secondary structure prediction. , 2003, Nucleic acids research.
[8] D. Turner,et al. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[9] Sean R. Eddy,et al. Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction , 2004, BMC Bioinformatics.
[10] Hiroshi Matsui,et al. Pair stochastic tree adjoining grammars for aligning and predicting pseudoknot RNA structures , 2004, Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004..
[11] Russell L. Malmberg,et al. Stochastic modeling of RNA pseudoknotted structures: a grammatical approach , 2003, ISMB.
[12] Peter F. Stadler,et al. RNA Structures with Pseudo-Knots - Graph-Theoretical and Combinatorial Properties , 1997 .
[13] W. Hsieh,et al. Proportions of Irreducible Diagrams , 1973 .
[14] Robert Giegerich,et al. Versatile and declarative dynamic programming using pair algebras , 2005, BMC Bioinformatics.
[15] R. Giegerich,et al. Complete probabilistic analysis of RNA shapes , 2006, BMC Biology.
[16] Jitender S. Deogun,et al. RNA Secondary Structure Prediction with Simple Pseudoknots , 2004, APBC.
[17] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[18] J. WISHART. Statistical Sampling , 1950, Nature.
[19] Christian M. Reidys,et al. Combinatorics of RNA Structures with Pseudoknots , 2007, Bulletin of mathematical biology.
[20] H. Al‐Hashimi,et al. Topology Links RNA Secondary Structure with Global Conformation, Dynamics, and Adaptation , 2010, Science.
[21] J. McCaskill. The equilibrium partition function and base pair binding probabilities for RNA secondary structure , 1990, Biopolymers.
[22] Christian M. Reidys,et al. Folding 3-Noncrossing RNA Pseudoknot Structures , 2009, J. Comput. Biol..
[23] Robert Giegerich,et al. Abstract shapes of RNA. , 2004, Nucleic acids research.
[24] D. W. Staple,et al. Open access, freely available online Primer Pseudoknots: RNA Structures with Diverse Functions , 2022 .
[25] Einar Andreas Rødland. Pseudoknots in RNA Secondary Structures: Representation, Enumeration, and Prevalence , 2006, J. Comput. Biol..
[26] Robert Giegerich,et al. Prediction of RNA Secondary Structure Including Kissing Hairpin Motifs , 2010, WABI.
[27] J. Sabina,et al. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.
[28] Peter F. Stadler,et al. tRNAdb 2009: compilation of tRNA sequences and tRNA genes , 2008, Nucleic Acids Res..
[29] Jennifer A. Doudna,et al. The chemical repertoire of natural ribozymes , 2002, Nature.
[30] Gary D. Stormo,et al. An RNA folding method capable of identifying pseudoknots and base triples , 1998, Bioinform..
[31] William S. Massey,et al. Algebraic Topology: An Introduction , 1977 .
[32] R. C. Penner,et al. Enumeration of linear chord diagrams , 2010, 1010.5614.
[33] Daming Zhu,et al. A New Pseudoknots Folding Algorithm for RNA Structure Prediction , 2005, COCOON.
[34] Petya V Krasteva. RNA structures , 2011, Nature Methods.
[35] Hosna Jabbari,et al. An O(n5) Algorithm for MFE Prediction of Kissing Hairpins and 4-Chains in Nucleic Acids , 2009, J. Comput. Biol..
[36] M. Waterman. Secondary Structure of Single-Stranded Nucleic Acidst , 1978 .
[37] P. Schuster,et al. Algorithm independent properties of RNA secondary structure predictions , 1996, European Biophysics Journal.
[38] A. Ferré-D’Amaré,et al. Crystal structure of a hepatitis delta virus ribozyme , 1998, Nature.
[39] Anne Condon,et al. Classifying RNA pseudoknotted structures , 2004, Theor. Comput. Sci..
[40] Daniel J. Kleitman,et al. Proportions of Irreducible Diagrams , 1970 .
[41] A. Zee,et al. Topological classification of RNA structures. , 2006, Journal of molecular biology.
[42] Daniel Götzmann. Multiple Context-Free Grammars , 2007 .
[43] Tadao Kasami,et al. RNA Pseudoknotted Structure Prediction Using Stochastic Multiple Context-Free Grammar , 2006 .
[44] Tatsuya Akutsu,et al. Dynamic Programming Algorithms for RNA Structure Prediction with Binding Sites , 2010, Pacific Symposium on Biocomputing.
[45] C. A. Theimer,et al. Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. , 2005, Molecular cell.
[46] Jerrold R. Griggs,et al. Algorithms for Loop Matchings , 1978 .
[47] G. Vernizzi,et al. LargeN Random Matrices for RNA Folding , 2005 .
[48] D. Giedroc,et al. Frameshifting RNA pseudoknots: Structure and mechanism , 2008, Virus Research.
[49] Carsten Wiuf,et al. Fatgraph models of proteins , 2009, 0902.1025.
[50] Elena Rivas,et al. The language of RNA: a formal grammar that includes pseudoknots , 2000, Bioinform..
[51] Martin Loebl,et al. The chromatic polynomial of fatgraphs and its categorification , 2008 .
[52] Michael Zuker,et al. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information , 1981, Nucleic Acids Res..
[53] Christian M. Reidys,et al. Addendum: topology and prediction of RNA pseudoknots , 2012, Bioinform..
[54] E Rivas,et al. A dynamic programming algorithm for RNA structure prediction including pseudoknots. , 1998, Journal of molecular biology.
[55] F. H. D. van Batenburg,et al. PseudoBase: structural information on RNA pseudoknots , 2001, Nucleic Acids Res..
[56] A. Condon,et al. Improved free energy parameters for RNA pseudoknotted secondary structure prediction. , 2010, RNA.
[57] Dirk Metzler,et al. Predicting RNA secondary structures with pseudoknots by MCMC sampling , 2007, Journal of mathematical biology.
[58] Christian M. Reidys,et al. Shapes of RNA Pseudoknot Structures , 2010, J. Comput. Biol..
[59] Tadao Kasami,et al. On Multiple Context-Free Grammars , 1991, Theor. Comput. Sci..
[60] Robert Giegerich,et al. Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics , 2004, BMC Bioinformatics.
[61] Shi-jie Chen. RNA folding: conformational statistics, folding kinetics, and ion electrostatics. , 2008, Annual review of biophysics.
[62] P. Stadler,et al. RNA structures with pseudo-knots: Graph-theoretical, combinatorial, and statistical properties , 1999, Bulletin of mathematical biology.
[63] Walter Fontana,et al. Fast folding and comparison of RNA secondary structures , 1994 .
[64] Michela Taufer,et al. PseudoBase++: an extension of PseudoBase for easy searching, formatting and visualization of pseudoknots , 2008, Nucleic Acids Res..
[65] Niles A. Pierce,et al. A partition function algorithm for nucleic acid secondary structure including pseudoknots , 2003, J. Comput. Chem..