Data Analytics and Management in Data Intensive Domains: 21st International Conference, DAMDID/RCDL 2019, Kazan, Russia, October 15–18, 2019, Revised Selected Papers

Recently, deep neural networks have showed amazing results in many fields. To build such networks, we usually use layers from a relatively small dictionary of available modules (fully-connected, convolutional, recurrent, etc.). Being restricted with this set of modules complicates transferring technology to new tasks. On the other hand, many important applications already have a long history and successful algorithmic solutions. Is it possible to use existing methods to construct better networks? In this paper, we cover three approaches to combining neural networks with algorithms and discuss their pros and cons. Specifically, we will discuss three approaches: structured pooling, unrolling of algorithm iterations into network layers and explicit differentiation of the output w.r.t. the input.

[1]  Marcin Andrychowicz,et al.  Learning to learn by gradient descent by gradient descent , 2016, NIPS.

[2]  O. V. Malkov,et al.  Cross-Matching Large Photometric Catalogs for Parameterization of Single and Binary Stars , 2011 .

[3]  O. Yu. Malkov,et al.  Accuracy of stellar parameters determined from multicolor photometry , 2014 .

[4]  Iasonas Kokkinos,et al.  Dense and Low-Rank Gaussian CRFs Using Deep Embeddings , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[5]  Harry Eugene Stanley,et al.  Languages cool as they expand: Allometric scaling and the decreasing need for new words , 2012, Scientific Reports.

[6]  Kai-Uwe Sattler,et al.  SQL Based Frequent Pattern Mining with FP-Growth , 2004, INAP/WLP.

[7]  Alexei Pozanenko,et al.  GRB 170817A Associated with GW170817: Multi-frequency Observations and Modeling of Prompt Gamma-Ray Emission , 2017, 1710.05448.

[8]  Tom Fawcett,et al.  Data science for business , 2013 .

[9]  Paul Gray,et al.  The Current State of Business Intelligence in Academia , 2014, Commun. Assoc. Inf. Syst..

[10]  Simone Paolo Ponzetto,et al.  BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network , 2012, Artif. Intell..

[11]  Ayrat Gatiatullin,et al.  Semantic Classification of Tatar Verbs : Selecting Relevant Parameters , 2018 .

[12]  A. G.,et al.  MEASUREMENTS OF AND FROM 42 HIGH-REDSHIFT SUPERNOVAE , 1998 .

[13]  Stavros Christodoulakis,et al.  Coupling Ontologies with Graphics Content for Knowledge Driven Visualization , 2006, IEEE Virtual Reality Conference (VR 2006).

[14]  N. Arunraj,et al.  A hybrid seasonal autoregressive integrated moving average and quantile regression for daily food sales forecasting , 2015 .

[15]  Sergey Belov,et al.  THE CMS TIER 1 AT JINR : FIVE YEARS OF OPERATIONS , 2018 .

[16]  Natalia Loukachevitch,et al.  Creating Russian WordNet by Conversion , 2016 .

[17]  Slav Petrov,et al.  Temporal Analysis of Language through Neural Language Models , 2014, LTCSS@ACL.

[18]  Mikhail L. Zymbler,et al.  Taming Elephants, or How to Embed Parallelism into PostgreSQL , 2013, DEXA.

[19]  Slav Petrov,et al.  Syntactic Annotations for the Google Books NGram Corpus , 2012, ACL.

[20]  Alexander Kirillovich,et al.  Towards a Tatar Wordnet: a Methodology of Using Tatar Thesaurus (short paper) , 2019, DAMDID/RCDL.

[21]  Yulia Tsvetkov,et al.  A bottom up approach to category mapping and meaning change , 2015, NetWordS.

[22]  T. Saracevic,et al.  Relevance: A review of the literature and a framework for thinking on the notion in information science. Part II: nature and manifestations of relevance , 2007, J. Assoc. Inf. Sci. Technol..

[23]  Oleg Malkov,et al.  Single-binary star separation by ultraviolet color index diagrams , 2011 .

[24]  Vasileios Lampos,et al.  The Expression of Emotions in 20th Century Books , 2013, PloS one.

[25]  E. Ishida,et al.  Anomaly Detection in the Open Supernova Catalog , 2019, Monthly Notices of the Royal Astronomical Society.

[26]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[27]  Ivan Smirnov,et al.  Relational–situational method for intelligent search and analysis of scientific publications , 2013 .

[28]  Hadi Esmaeilzadeh,et al.  In-RDBMS Hardware Acceleration of Advanced Analytics , 2018, Proc. VLDB Endow..

[29]  Ruizhi Xie,et al.  Does agriculture really matter for economic Growth in Developing Countries , 2015 .

[30]  Sen Guo,et al.  A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm , 2013, Knowl. Based Syst..

[31]  P. Greenfield The Changing Psychology of Culture From 1800 Through 2000 , 2013, Psychology Science.

[32]  Iasonas Kokkinos,et al.  Fast, Exact and Multi-scale Inference for Semantic Image Segmentation with Deep Gaussian CRFs , 2016, ECCV.

[33]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[34]  L. Hillenbrand,et al.  The Stellar Populations of Praesepe and Coma Berenices , 2007, 0708.2719.

[35]  Olivier Morin,et al.  Birth of the cool: a two-centuries decline in emotional expression in Anglophone fiction , 2017, Cognition & emotion.

[36]  Vladimir Ryazanov,et al.  Various Machine Learning Methods Efficiency Comparison in Application to Inorganic Compounds Design , 2018, DAMDID/RCDL.

[37]  Douglas Biber,et al.  Representativeness in corpus design , 1993 .

[38]  David A. Ellis,et al.  Mental Representations of Weekdays , 2015, PloS one.

[39]  Heidi Jo Newberg,et al.  SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH g = 14–20 , 2009, 0902.1781.

[40]  Shimon Ullman,et al.  Class-Specific, Top-Down Segmentation , 2002, ECCV.

[41]  R. L. Kurucz,et al.  New Grids of ATLAS9 Model Atmospheres , 2004, astro-ph/0405087.

[42]  Alexander Fazliev,et al.  Systematization of published research plots in spectroscopy of weakly bounded complexes of molecular oxygen and nitrogen , 2018, Atmospheric and Ocean Optics.

[43]  D. Massa,et al.  An Analysis of the Shapes of Interstellar Extinction Curves. V. The IR-through-UV Curve Morphology , 2007, 0705.0154.

[44]  Natalia Loukachevitch,et al.  Toward Domain-Specific Russian-Tatar Thesaurus Construction , 2017 .

[45]  Wei Wang,et al.  The SAGE photometric survey: technical description , 2018, Research in Astronomy and Astrophysics.

[46]  Eli Livne,et al.  Progenitors of low-luminosity Type II-Plateau supernovae , 2017, 1709.08673.

[47]  Alexander Fazliev,et al.  Applied Ontologies for Managing Graphic Resources in Spectroscopy , 2019, DAMDID/RCDL.

[48]  O. B. Rodimova,et al.  Systematization of Published Scientific Graphics Characterizing the Water Vapor Continuum Absorption: II. Publications of 1981–2000 , 2018, Atmospheric and Ocean Optics.

[49]  C. Bailer-Jones,et al.  Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2 , 2018, The Astronomical Journal.

[50]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.

[51]  J. Pennebaker,et al.  The Psychological Meaning of Words: LIWC and Computerized Text Analysis Methods , 2010 .

[52]  Yordan Kalmukov,et al.  Comparative Analysis of Existing Methods and Algorithms for Automatic Assignment of Reviewers to Papers , 2010, ArXiv.

[53]  S Roiser,et al.  The LHCb software and computing upgrade for Run 3: opportunities and challenges , 2017 .

[54]  Oleksandr Frei,et al.  BigARTM: Open Source Library for Regularized Multimodal Topic Modeling of Large Collections , 2015, AIST.

[55]  Alexander Koplenig,et al.  The impact of lacking metadata for the measurement of cultural and linguistic change using the Google Ngram data sets - Reconstructing the composition of the German corpus in times of WWII , 2015, Digit. Scholarsh. Humanit..

[56]  Gustavo Turecki,et al.  Suicide and suicidal behaviour , 2016, The Lancet.

[57]  David J. Hand,et al.  CASOS: a subspace method for anomaly detection in high dimensional astronomical databases , 2013, Stat. Anal. Data Min..

[58]  Mohamed Ali Zoghlami,et al.  Speeding up the large-scale consensus fuzzy clustering for handling Big Data , 2017, Fuzzy Sets Syst..

[59]  Harry Eugene Stanley,et al.  Statistical Laws Governing Fluctuations in Word Use from Word Birth to Word Death , 2011, Scientific Reports.

[60]  Mikhail L. Zymbler,et al.  Very Large Graph Partitioning by Means of Parallel DBMS , 2013, ADBIS.

[61]  Natalia V. Loukachevitch,et al.  RuThes Linguistic Ontology vs. Russian Wordnets , 2014, GWC.

[62]  Ying Wah Teh,et al.  Text mining of news-headlines for FOREX market prediction: A Multi-layer Dimension Reduction Algorithm with semantics and sentiment , 2015, Expert Syst. Appl..

[63]  Piek Vossen,et al.  EuroWordNet: general document , 2002 .

[64]  Renée A. McCauley,et al.  An undergraduate degree in data science: curriculum and a decade of implementation experience , 2014, SIGCSE.

[65]  Carlos Ordonez,et al.  Integrating K-means clustering with a relational DBMS using SQL , 2006, IEEE Transactions on Knowledge and Data Engineering.

[66]  Darrell E. Burch,et al.  Continuum Absorption By Atmospheric H2O , 1981, Other Conferences.

[67]  O. B. Rodimova,et al.  Systematization of published research graphics characterizing weakly bound molecular complexes with carbon dioxide , 2017, Atmospheric and Ocean Optics.

[68]  Шелманов А О,et al.  Methods for seMantic role labeling of russian texts , 2014 .

[69]  M. de Rijke,et al.  Formal models for expert finding in enterprise corpora , 2006, SIGIR.

[70]  E. Ishida,et al.  On the realistic validation of photometric redshifts , 2017, 1701.08748.

[71]  Valery D. Solovyev,et al.  Linguistic Big Data: Problem of Purity and Representativeness , 2019, DAMDID/RCDL.

[72]  Maxim Stankevich,et al.  Depression Detection from Social Media Texts , 2019, DAMDID/RCDL.

[73]  Oleg Malkov,et al.  Cross-Matching of Objects in Large Sky Surveys , 2019, DAMDID/RCDL.

[74]  V Bochkarev,et al.  Universals versus historical contingencies in lexical evolution , 2014, Journal of The Royal Society Interface.

[75]  R. Pelló,et al.  STELIB: A library of stellar spectra at R 2000 ?;?? , 2003, astro-ph/0302334.

[76]  Hans-Peter Kriegel,et al.  LOF: identifying density-based local outliers , 2000, SIGMOD '00.

[77]  Fabio Crestani,et al.  A Test Collection for Research on Depression and Language Use , 2016, CLEF.

[78]  Bernhard Thalheim,et al.  E/R Based Scenario Modeling for Rapid Prototyping of Web Information Services , 1999, ER.

[79]  Nicholas B. Suntzeff,et al.  THE CARNEGIE SUPERNOVA PROJECT: FIRST PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE , 2009, 0910.3330.

[80]  P. Greenfield,et al.  Cultural evolution over the last 40 years in China: using the Google Ngram Viewer to study implications of social and political change for cultural values. , 2015, International journal of psychology : Journal international de psychologie.

[81]  Marvin Johnson,et al.  Concepts and applications of molecular similarity , 1990 .

[82]  Daniel Zeman,et al.  Data Conversion and Consistency of Monolingual Corpora: Russian UD Treebanks , 2018 .

[83]  Kemal Oflazer,et al.  Building a wordnet for Turkish , 2004 .

[84]  Andreas Rauber,et al.  Improving Scientific Conferences by Enhancing Conference Management Systems with Information Mining Capabilities , 2007, 2006 1st International Conference on Digital Information Management.

[85]  David J. DeWitt,et al.  Parallel database systems: the future of high performance database systems , 1992, CACM.

[86]  Van-Nam Huynh,et al.  ARIMA Versus Artificial Neural Network for Thailand's Cassava Starch Export Forecasting , 2016, Causal Inference in Econometrics.

[87]  Andrei Tsaregorodtsev DIRAC Distributed Computing Services , 2014 .

[88]  Stephen P. Boyd,et al.  Differentiable Convex Optimization Layers , 2019, NeurIPS.

[89]  Zoran Budimac,et al.  Data science in education: Big data and learning analytics , 2017, Comput. Appl. Eng. Educ..

[90]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[91]  Peter Wegner,et al.  A comparison of HEP code with SPEC1 benchmarks on multi-core worker nodes , 2010 .

[92]  Luciana Bianchi,et al.  Revised Catalog of GALEX Ultraviolet Sources. I. The All-Sky Survey: GUVcat_AIS , 2017, 1704.05903.

[93]  Olivier Bienayme,et al.  THE RADIAL VELOCITY EXPERIMENT (RAVE): FIFTH DATA RELEASE , 2013, 1609.03210.

[94]  P. K. Mahesh,et al.  In-orbit Calibrations of the Ultraviolet Imaging Telescope , 2017, 1705.03715.

[95]  Petr Sojka,et al.  Software Framework for Topic Modelling with Large Corpora , 2010 .

[96]  Andreas J. Peters,et al.  EOS as the present and future solution for data storage at CERN , 2015 .

[97]  Simone A. Ludwig MapReduce-based fuzzy c-means clustering algorithm: implementation and scalability , 2015, Int. J. Mach. Learn. Cybern..

[98]  Christel Kemke,et al.  Modeling Shapes and Graphics Concepts in an Ontology , 2011, SHAPES.

[99]  Strasbourg,et al.  A standard stellar library for evolutionary synthesis: I. calibration of theoretical spectra , 1997, astro-ph/9701019.

[100]  P. Baldi,et al.  Searching for exotic particles in high-energy physics with deep learning , 2014, Nature Communications.

[101]  Dong Xiaoxia,et al.  Using Quantile Regression Approach to Analyze Price Movements of Agricultural Products in China , 2012 .

[102]  A. Floers,et al.  Gaia16aye: a flaring object of uncertain nature in Cygnus , 2016 .

[103]  Polina Panicheva,et al.  Dark personalities on Facebook: Harmful online behaviors and language , 2018, Comput. Hum. Behav..

[104]  Pavlos Protopapas,et al.  SUPERVISED DETECTION OF ANOMALOUS LIGHT CURVES IN MASSIVE ASTRONOMICAL CATALOGS , 2014, ArXiv.

[105]  Pavel Minaev,et al.  Searching for Optical Counterparts of LIGO/Virgo Events in O2 Run , 2019, DAMDID/RCDL.

[106]  France,et al.  New release of the ELODIE library: Version 3.1 , 2007 .

[107]  Rafael S. de Souza,et al.  GLADE: A galaxy catalogue for multimessenger searches in the advanced gravitational-wave detector era , 2018, Monthly Notices of the Royal Astronomical Society.

[108]  James W. Taylor A Quantile Regression Neural Network Approach to Estimating the Conditional Density of Multiperiod Returns , 2000 .

[109]  Saurabh W. Jha,et al.  The Discovery of the Electromagnetic Counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck , 2017, 1710.05854.

[110]  Dmitry Devyatkin,et al.  Framework for Automated Food Export Gain Forecasting , 2019, DAMDID/RCDL.

[111]  Pavel Kostenetskiy,et al.  SUSU Supercomputer Resources for Industry and fundamental Science , 2018, 2018 Global Smart Industry Conference (GloSIC).

[112]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[113]  O. Yu. Malkov,et al.  Cross-identification of large surveys for finding interstellar extinction , 2012 .

[114]  Roland Diehl,et al.  THE FERMI GAMMA-RAY BURST MONITOR , 2009, 0908.0450.

[115]  Nicholas J Wareham,et al.  Depression and ischemic heart disease mortality: evidence from the EPIC-Norfolk United Kingdom prospective cohort study. , 2008, The American journal of psychiatry.

[116]  András Lukács,et al.  Shaping SQL-Based Frequent Pattern Mining Algorithms , 2005, KDID.

[117]  Alexander S. Szalay,et al.  VOTable: Tabular Data for the Virtual Observatory , 2004 .

[118]  Madina Kukenova,et al.  Financial Development and Sustainable Exports: Evidence from Firm‐Product Data , 2014, SSRN Electronic Journal.

[119]  Ulf-Dietrich Reips,et al.  The changing psychology of culture in German‐speaking countries: A Google Ngram study , 2018, International journal of psychology : Journal international de psychologie.

[120]  V. I. Belikov What and how can a linguist get from digitized texts , 2016 .

[121]  Hildegart Ahumada,et al.  Forecasting food prices: The case of corn, soybeans and wheat , 2016 .

[122]  Milan Straka,et al.  Tokenizing, POS Tagging, Lemmatizing and Parsing UD 2.0 with UDPipe , 2017, CoNLL.

[123]  D. V. Bisikalo,et al.  Possible electromagnetic manifestations of merging black holes , 2018, Astronomy Reports.

[124]  D. Tufis,et al.  BalkaNet : Aims , Methods , Results and Perspectives . A General Overview , 2004 .

[125]  Vladimir V. Bochkarev,et al.  A Method of Semantic Change Detection Using Diachronic Corpora Data , 2019, AIST.

[126]  Jiawei Han,et al.  DBMiner: A System for Mining Knowledge in Large Relational Databases , 1996, KDD.

[127]  A. Rest,et al.  PS1-12sk IS A PECULIAR SUPERNOVA FROM A He-RICH PROGENITOR SYSTEM IN A BRIGHTEST CLUSTER GALAXY ENVIRONMENT , 2013, 1303.1818.

[128]  O. B. Rodimova,et al.  The continuum absorption: trust assessment of published graphical information , 2019, Atmospheric and Ocean Optics.

[129]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[130]  H. J. Farnhill,et al.  A 3D extinction map of the northern Galactic plane based on IPHAS photometry , 2014, 1406.0009.

[131]  Dana Kovaleva,et al.  Parametrization of single and binary stars , 2010 .

[132]  Dana Kovaleva,et al.  New Data Access Challenges for Data Intensive Research in Russia , 2015, DAMDID/RCDL.

[133]  Eugene Magnier,et al.  A THREE-DIMENSIONAL MAP OF MILKY WAY DUST , 2015, 1507.01005.

[134]  B. Plez,et al.  On the spectra and photometry of M-giant stars , 1994 .

[135]  David Soderblom,et al.  STELLAR ACTIVITY IN THE BROADBAND ULTRAVIOLET , 2011, 1105.1377.

[136]  Leonid B. Sokolinsky Organization of Parallel Query Processing in Multiprocessor Database Machines with Hierarchical Architecture , 2004, Programming and Computer Software.

[137]  Konstantin Vorontsov,et al.  Additive regularization of topic models , 2015, Machine Learning.

[138]  Sethuraman Panchanathan,et al.  A logical foundation for an information engineering curriculum , 2000, 30th Annual Frontiers in Education Conference. Building on A Century of Progress in Engineering Education. Conference Proceedings (IEEE Cat. No.00CH37135).

[139]  D. Poznanski,et al.  The weirdest SDSS galaxies: results from an outlier detection algorithm , 2016, 1611.07526.

[140]  Polina Panicheva,et al.  Lexical, morphological and semantic correlates of the dark triad personality traits in russian facebook texts , 2016, 2016 IEEE Artificial Intelligence and Natural Language Conference (AINL).

[141]  Vladimir V. Bochkarev,et al.  Google Books Ngram: Problems of Representativeness and Data Reliability , 2019, DAMDID/RCDL.

[142]  Alexander Fazliev,et al.  Systematization of Tabular and Graphical Resources in Quantitative Spectroscopy , 2018, DAMDID/RCDL.

[143]  O. Malkov,et al.  Estimating Stellar Parameters and Interstellar Extinction from Evolutionary Tracks , 2016 .

[144]  Fatos Xhafa,et al.  Apache Mahout's k-Means vs Fuzzy k-Means Performance Evaluation , 2016, 2016 International Conference on Intelligent Networking and Collaborative Systems (INCoS).

[145]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[146]  Harinder P. Singh,et al.  The Indo-US Library of Coudé Feed Stellar Spectra , 2004, astro-ph/0402435.

[147]  Thomas J. Scheff,et al.  Toward Defining Basic Emotions , 2015 .

[148]  C. Babusiaux,et al.  Three-dimensional maps of interstellar dust in the Local Arm: using Gaia, 2MASS, and APOGEE-DR14 , 2018, Astronomy & Astrophysics.

[149]  Johan Bollen,et al.  An algorithm to determine peer-reviewers , 2006, CIKM '08.

[150]  Mikhail L. Zymbler,et al.  An Approach to Data Mining inside PostgreSQL Based on Parallel Implementation of UDFs , 2017, DAMDID/RCDL.

[151]  Ben Kei Daniel,et al.  Big Data and data science: A critical review of issues for educational research , 2019, Br. J. Educ. Technol..

[152]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[153]  Paolo Ferragina,et al.  WISER: A Semantic Approach for Expert Finding in Academia based on Entity Linking , 2018, Inf. Syst..

[154]  Arvind Bhardwaj,et al.  Demand Forecasting of the Short-Lifecycle Dairy Products , 2018, Understanding the Role of Business Analytics.

[155]  神田 信彦 Beck Depression Inventory-IIについての一考察 , 2004 .

[156]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[157]  P Charpentier Benchmarking worker nodes using LHCb productions and comparing with HEPSpec 06 , 2017 .

[158]  Christopher M. Danforth,et al.  Is language evolution grinding to a halt? The scaling of lexical turbulence in English fiction suggests it is not , 2015, J. Comput. Sci..

[159]  Mikhail L. Zymbler,et al.  Encapsulation of partitioned parallelism into open-source database management systems , 2015, Programming and Computer Software.

[160]  Oleg Malkov,et al.  A Synthetic Map of the Galactic Interstellar Extinction , 2002 .

[161]  Erez Lieberman Aiden,et al.  Uncharted: Big Data as a Lens on Human Culture , 2013 .

[162]  Victor Dudarev,et al.  Relevance Evaluation of Information Retrieval in the Integration of Information Systems on Inorganic Substances Properties , 2019, DAMDID/RCDL.

[163]  Svetlana Alexeeva,et al.  An Opinion Word Lexicon and a Training Dataset for Russian Sentiment Analysis of Social Media , 2016 .

[164]  Igor Pelevanyuk,et al.  DIRAC System as a Mediator between Hybrid Resources and Data Intensive Domains , 2019, DAMDID/RCDL.

[165]  John P. McCrae,et al.  Toward a truly multilingual GlobalWordnet Grid , 2016, GWC.

[166]  Nasser Ghadiri,et al.  BigFCM: Fast, precise and scalable FCM on hadoop , 2016, Future Gener. Comput. Syst..

[167]  R. Margutti,et al.  An Open Catalog for Supernova Data , 2016, 1605.01054.

[168]  Thomas T. Hills,et al.  Recent evolution of learnability in American English from 1800 to 2000 , 2015, Cognition.

[169]  A. Pickles A Stellar Spectral Flux Library: 1150–25000 Å , 1998 .

[170]  Christian Chiarcos,et al.  Linguistic Linked Open Data Cloud , 2020 .

[171]  Valentin Malykh,et al.  Named Entity Recognition in Noisy Domains , 2018, 2018 International Conference on Artificial Intelligence Applications and Innovations (IC-AIAI).

[172]  S. Roweis,et al.  ASTROMETRY.NET: BLIND ASTROMETRIC CALIBRATION OF ARBITRARY ASTRONOMICAL IMAGES , 2009, 0910.2233.

[173]  S. G. Sichevskij Applicability of Broad-Band Photometry for Determining the Properties of Stars and Interstellar Extinction , 2018 .

[174]  Natalia V. Loukachevitch,et al.  RuThes Cloud: Towards a Multilevel Linguistic Linked Open Data Resource for Russian , 2017, KESW.

[175]  Fei Tony Liu,et al.  Isolation-Based Anomaly Detection , 2012, TKDD.

[176]  Don R. Hush,et al.  Network constraints and multi-objective optimization for one-class classification , 1996, Neural Networks.

[177]  Christopher Ré,et al.  Towards a unified architecture for in-RDBMS analytics , 2012, SIGMOD Conference.

[178]  Michael Brady,et al.  Novelty detection for the identification of masses in mammograms , 1995 .

[179]  Ramiro Gonçalves,et al.  Learning Analytics as a Core Component for Higher Education Disruption: Governance Stakeholder , 2017, TEEM.

[180]  M. de Rijke,et al.  On the Assessment of Expertise Profiles , 2013, DIR.

[181]  J. Manyika Big data: The next frontier for innovation, competition, and productivity , 2011 .

[182]  Kun Li,et al.  The MADlib Analytics Library or MAD Skills, the SQL , 2012, Proc. VLDB Endow..

[183]  Pavlos Protopapas,et al.  Finding anomalous periodic time series , 2009, Machine Learning.

[184]  Nazli Goharian,et al.  Depression and Self-Harm Risk Assessment in Online Forums , 2017, EMNLP.

[185]  Yan Huang,et al.  Cluster-By: An Efficient Clustering Operator in Emergency Management Database Systems , 2013, WAIM Workshops.

[186]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[187]  F I Belialov,et al.  [Depression, anxiety, stress, and mortality]. , 2016, Terapevticheskii arkhiv.

[188]  H. J. Farnhill,et al.  The VST Photometric Hα Survey of the Southern Galactic Plane and Bulge (VPHAS , 2014, 1402.7024.

[189]  Oleg Malkov,et al.  Verification of Photometric Parallaxes with Gaia DR2 Data , 2018, Galaxies.

[190]  Jakob Nielsen,et al.  Automating the assignment of submitted manuscripts to reviewers , 1992, SIGIR '92.

[191]  Guilherme De A. Barreto,et al.  Long-term time series prediction with the NARX network: An empirical evaluation , 2008, Neurocomputing.

[192]  N. N. Kireeva,et al.  General catalogue of variable stars: Version GCVS 5.1 , 2017 .

[193]  Xiaoling Wang,et al.  Time-Aware and Topic-Based Reviewer Assignment , 2017, DASFAA Workshops.

[194]  Toyohide Watanabe,et al.  Automatic Paper-to-reviewer Assignment, based on the Matching Degree of the Reviewers , 2013, KES.

[195]  Oleg Malkov,et al.  Interstellar extinction from photometric surveys: application to four high-latitude areas , 2018 .

[196]  русском языке,et al.  PREDICTING DEPRESSION FROM ESSAYS IN RUSSIAN , 2019 .

[197]  Xiuying Qian,et al.  How have males and females been described over the past two centuries? An analysis of Big-Five personality-related adjectives in the Google English Books , 2018, Journal of Research in Personality.

[198]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[199]  Robert J Glynn,et al.  Depression and risk of sudden cardiac death and coronary heart disease in women: results from the Nurses' Health Study. , 2009, Journal of the American College of Cardiology.

[200]  Kai-Uwe Sattler,et al.  SQL database primitives for decision tree classifiers , 2001, CIKM '01.

[201]  D. Boudon,et al.  4MOST: Project overview and information for the First Call for Proposals , 2019, 1903.02464.

[202]  Paulo B. Góes,et al.  Business Intelligence and Analytics Education, and Program Development: A Unique Opportunity for the Information Systems Discipline , 2012, TMIS.

[203]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[204]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[205]  Tao Li,et al.  A survey on expert finding techniques , 2017, Journal of Intelligent Information Systems.

[206]  Tie-Yan Liu,et al.  LightGBM: A Highly Efficient Gradient Boosting Decision Tree , 2017, NIPS.

[207]  Martin Wynne,et al.  Developing Linguistic Corpora: a Guide to Good Practice , 2005 .

[208]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[209]  O. Yu. Malkov,et al.  Comparative analysis of modern empirical spectrophotometric atlases with multicolor photometric catalogues , 2012 .

[210]  Jeff Cooke,et al.  Superluminous supernovae at redshifts of 2.05 and 3.90 , 2012, Nature.

[211]  Lijun Wang,et al.  A comprehensive survey of evaluation metrics in paper-reviewer assignment , 2015 .

[212]  A. Mahabal,et al.  Optimizing spectroscopic follow-up strategies for supernova photometric classification with active learning , 2018, Monthly Notices of the Royal Astronomical Society.

[213]  Erez Lieberman Aiden,et al.  Quantitative Analysis of Culture Using Millions of Digitized Books , 2010, Science.

[214]  Dmitry Devyatkin,et al.  Expert Assignment Method Based on Similar Document Retrieval , 2019, DAMDID/RCDL.

[215]  J. Pennebaker,et al.  The Secret Life of Pronouns , 2003, Psychological science.

[216]  A. Z. Fazliev,et al.  Collection of published plots on water vapor absorption cross sections , 2018, Atmospheric and Ocean Optics.

[217]  D J Colling,et al.  GridPP: the UK grid for particle physics , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[218]  V. Straĭzhis,et al.  Multicolor stellar photometry , 1992 .

[219]  Philip Graff,et al.  GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP , 2016, 1603.07333.

[220]  Xu Zhou,et al.  The first data release (DR1) of the LAMOST regular survey , 2015 .

[221]  V. Bochkarev,et al.  Transition to market economy promotes individualistic values: Analysing changes in frequencies of Russian words from 1980 to 2008 , 2019, International journal of psychology : Journal international de psychologie.

[222]  Saif Mohammad,et al.  From once upon a time to happily ever after: Tracking emotions in mail and books , 2012, Decis. Support Syst..

[223]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[224]  Sahar Shahaf,et al.  Detecting outliers and learning complex structures with large spectroscopic surveys - a case study with APOGEE stars , 2017, 1711.00022.

[225]  Donghui Yan,et al.  A First Course in Data Science , 2019, Journal of Statistics Education.

[226]  Pavel Minaev,et al.  Search and Observations of Optical Counterparts for Events Registered by LIGO/Virgo Gravitational Wave Detectors , 2019, DAMDID/RCDL.

[227]  Daniel Serain Middleware and Enterprise Application Integration , 2002 .

[228]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[229]  Emille E. O. Ishida,et al.  Use of Machine Learning for Anomaly Detection Problem in Large Astronomical Databases , 2019, DAMDID/RCDL.

[230]  A. Pastorello,et al.  Supernova 2013am in M65 = Psn J11185695+1303494 , 2013 .

[231]  Ivan Lukovic Formal Education in Data Science - Recent Experiences from Faculty of Technical Sciences of University of Novi Sad , 2019, DAMDID/RCDL.

[232]  N. N. Kiselyova,et al.  Database on the bandgap of inorganic substances and materials , 2016, Inorganic Materials: Applied Research.

[233]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[234]  Michael E. W. Varnum,et al.  Social Structure, Infectious Diseases, Disasters, Secularism, and Cultural Change in America , 2014, Psychological science.

[235]  L. A. Kalinichenko,et al.  Conceptual approach to astronomical problems , 2016 .

[236]  A. J. Cenarro,et al.  An updated MILES stellar library and stellar population models , 2011, 1107.2303.

[237]  Robert Greimel,et al.  VizieR Online Data Catalog: IPHAS DR2 Source Catalogue (Barentsen+, 2014) , 2014 .

[238]  Salvatore Mele,et al.  Management of Scientific Images: an approach to the extraction, annotation and retrieval of figures in the field of High Energy Physics , 2013 .

[239]  Harinder P. Singh,et al.  Coudé-feed stellar spectral library – atmospheric parameters , 2010, 1009.1491.

[240]  Olcay Taner Yildiz,et al.  Constructing a WordNet for Turkish Using Manual and Automatic Annotation , 2018, ACM Trans. Asian Low Resour. Lang. Inf. Process..

[241]  Eduard Yu. Lerner,et al.  Modelling of growth of syntactic relations network in English and Russian , 2018 .

[242]  Steven Skiena,et al.  Statistically Significant Detection of Linguistic Change , 2014, WWW.

[243]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[244]  M. Cristina Pattuelli,et al.  Ontologies in the Time of Linked Data , 2015 .

[245]  Sven Koitka,et al.  Utilizing Neural Networks and Linguistic Metadata for Early Detection of Depression Indications in Text Sequences , 2018, IEEE Transactions on Knowledge and Data Engineering.

[246]  Klaus Krippendorff,et al.  The Language of Objects , 1989 .

[247]  Tomasz Imielinski,et al.  MSQL: A Query Language for Database Mining , 1999, Data Mining and Knowledge Discovery.

[248]  Giuseppe Psaila,et al.  A New SQL-like Operator for Mining Association Rules , 1996, VLDB.

[249]  Stefano Ferilli,et al.  Automatic Topics Identification for Reviewer Assignment , 2006, IEA/AIE.

[250]  O. Yu. Malkov,et al.  Classification of Stars with WBVR Photometry , 2013 .

[251]  Li-Xin Li,et al.  Transient Events from Neutron Star Mergers , 1998 .

[252]  Dmitry Devyatkin,et al.  Detection of current research directions based on full-text clustering , 2015, 2015 Science and Information Conference (SAI).

[253]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[254]  Canada.,et al.  Data Mining and Machine Learning in Astronomy , 2009, 0906.2173.

[255]  Natalia V. Loukachevitch,et al.  Comparing Two Thesaurus Representations for Russian , 2018, GWC.

[256]  V. Bakis,et al.  Interrelated main-sequence mass–luminosity, mass–radius, and mass–effective temperature relations , 2018, Monthly Notices of the Royal Astronomical Society.

[257]  Olga Nevzorova,et al.  Russian-Tatar Socio-Political Thesaurus: Methodology, Challenges, the Status of the Project , 2017, RANLP.

[258]  Bernhard Thalheim,et al.  Linguistic based search facilities in snowflake-like database schemes , 2004, Data Knowl. Eng..

[259]  K. Ulaczyk,et al.  The Emergence of a Lanthanide-Rich Kilonova Following the Merger of Two Neutron Stars , 2017, 1710.05455.

[260]  Carlos Ordonez,et al.  Can we analyze big data inside a DBMS? , 2013, DOLAP '13.

[261]  G. J. White,et al.  The WEAVE-LOFAR Survey , 2016, 1611.02706.

[262]  Mikhail L. Zymbler,et al.  Integrating DBMS and Parallel Data Mining Algorithms for Modern Many-Core Processors , 2017, DAMDID/RCDL.

[263]  Francis Bond,et al.  Linking and Extending an Open Multilingual Wordnet , 2013, ACL.

[264]  Ben D. Fulcher,et al.  Predicting Depression From Language-Based Emotion Dynamics: Longitudinal Analysis of Facebook and Twitter Status Updates , 2018, Journal of medical Internet research.

[265]  Alexander Koplenig,et al.  A fully data-driven method to identify (correlated) changes in diachronic corpora , 2015, ArXiv.

[266]  Maxim Stankevich,et al.  Feature Engineering for Depression Detection in Social Media , 2018, ICPRAM.

[267]  Alexey Privezentsev,et al.  Tabular and Graphic Resources in Quantitative Spectroscopy , 2018, DAMDID/RCDL.

[268]  B. Tulasi,et al.  Significance of Big Data and Analytics in Higher Education , 2013 .

[269]  Wm. A. Wheaton,et al.  2MASS All Sky Catalog of point sources. , 2003 .

[270]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[271]  Marco Del Giudice The Twentieth Century Reversal of Pink-Blue Gender Coding: A Scientific Urban Legend? , 2012 .

[272]  D. L. Gorshanov,et al.  Apex I and Apex II software packages for the reduction of astronomical CCD observations , 2010 .

[273]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[274]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[275]  T. Johnstone,et al.  In an Absolute State: Elevated Use of Absolutist Words Is a Marker Specific to Anxiety, Depression, and Suicidal Ideation , 2018, Clinical psychological science : a journal of the Association for Psychological Science.

[276]  I. V. Ptashnik,et al.  Water vapour self-continuum and water dimers: 1. Analysis of recent work , 2011 .

[277]  R. Poggiani Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Frontier Research in Astrophysics – III — PoS(FRAPWS2018).

[278]  S. Karpov,et al.  Cross Catalogue Matching with Virtual Observatory and Parameterization of Stars , 2012 .

[279]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[280]  Naomi S. Altman,et al.  Quantile regression , 2019, Nature Methods.

[281]  Christopher M. Danforth,et al.  Characterizing the Google Books Corpus: Strong Limits to Inferences of Socio-Cultural and Linguistic Evolution , 2015, PloS one.

[282]  Nikolai Lavrentiev,et al.  Systematization of graphically plotted published spectral functions of weakly bound water complexes , 2016, Atmospheric and Ocean Optics.

[283]  R. Weron,et al.  Probabilistic forecasting of electricity spot prices using Factor Quantile Regression Averaging , 2016 .

[284]  Anita Sundaram Coleman,et al.  Scientific Models as Works , 2002 .

[285]  James D. McCaffrey A Hybrid System for Analyzing Very Large Graphs , 2012, 2012 Ninth International Conference on Information Technology - New Generations.

[286]  Carlos Ordonez,et al.  Bayesian Classifiers Programmed in SQL , 2010, IEEE Transactions on Knowledge and Data Engineering.

[287]  Yoshua Bengio,et al.  Global training of document processing systems using graph transformer networks , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[288]  Valentin Malykh,et al.  Noise Robustness in Aspect Extraction Task , 2018, 2018 International Conference on Artificial Intelligence Applications and Innovations (IC-AIAI).

[289]  Jaclyn D. Kropp,et al.  The Effects Of Tanzanian Maize Export Bans On Producers’ Welfare And Food Security , 2016 .

[290]  Yana Kraeva,et al.  Big Data Processing and Analytics Inside DBMS , 2019, DAMDID/RCDL.

[291]  Joseph J. Pear,et al.  A History of “Behavior” and “Mind”: Use of Behavioral and Cognitive Terms in the 20th Century , 2015 .

[292]  Zhi-Hua Zhou,et al.  Isolation Forest , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[293]  Valentina Presutti,et al.  An Ontology of Resources for Linked Data , 2009, LDOW.

[294]  Andrei Tsaregorodtsev,et al.  Hybrid Distributed Computing Service Based on the DIRAC Interware , 2016, DAMDID/RCDL.

[295]  Ulf-Dietrich Reips,et al.  Guideline for improving the reliability of Google Ngram studies: Evidence from religious terms , 2019, PloS one.