Simulation and optimization of polymer-coated microsphere resonators in chemical vapor sensing.

This study presents a chemical vapor sensor based on polymer-coated microsphere resonators. A theoretical simulation of the sensor response is performed, and optimization of the polymer layer thickness is investigated. Results show that the sensor exhibits a good linearity and a low detection limit of the refractive index change. Especially at the thermostable thickness of the polymer layer, the refractive index detection limit of the wavelength around 780 nm can be as low as ~2×10⁻⁸ refractive index unit for a spectral resolution of 10 fm, without any temperature control. Because of the good sensing performance and simple manipulation, the proposed sensor is a very promising platform for chemical vapor detections.

[1]  Tao Ling,et al.  Analysis of the sensing properties of silica microtube resonator sensors , 2009 .

[2]  A. Matsko,et al.  Optical resonators with whispering-gallery modes-part I: basics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  Anbo Wang,et al.  Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient. , 2007, Optics letters.

[4]  Tao Ling,et al.  A unique resonance mode observed in a prism-coupled micro-tube resonator sensor with superior index sensitivity. , 2007, Optics express.

[5]  Alexander Ksendzov,et al.  Integrated optics ring-resonator chemical sensor with polymer transduction layer , 2004 .

[6]  Xudong Fan,et al.  Analysis of ring resonators for chemical vapor sensor development. , 2008, Optics express.

[7]  Xudong Fan,et al.  On the performance quantification of resonant refractive index sensors. , 2008, Optics express.

[8]  Dieter Braun,et al.  Protein detection by optical shift of a resonant microcavity , 2002 .

[9]  Vittorio M. N. Passaro,et al.  Ammonia Optical Sensing by Microring Resonators , 2007, Sensors.

[10]  Lan Yang,et al.  Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating , 2008 .

[11]  Robert P. H. Chang,et al.  Detection of chemical species using ultraviolet microdisk lasers , 2004 .

[12]  S. Arnold,et al.  Shift of whispering-gallery modes in microspheres by protein adsorption. , 2003, Optics letters.

[13]  G. Guo,et al.  High-Q silica microsphere by poly(methyl methacrylate) coating and modifying , 2010 .

[14]  S. Sarkisov,et al.  Single-arm double-mode double-order planar waveguide interferometric sensor. , 2001, Applied optics.

[15]  Ian M. White,et al.  Refractometric sensors based on microsphere resonators , 2005 .

[16]  Stephen Arnold,et al.  Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift sensor and TE-TM resonance matching , 2007 .

[17]  Xudong Fan,et al.  Liquid-core optical ring-resonator sensors. , 2006, Optics letters.

[18]  Vladimir S. Ilchenko,et al.  Ultimate Q of optical microsphere resonators , 1996, Other Conferences.

[19]  Xudong Fan,et al.  Rapid chemical-vapor sensing using optofluidic ring resonators. , 2008, Optics letters.

[20]  Yan Li,et al.  On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator , 2010 .

[21]  Hongying Zhu,et al.  Overview of novel integrated optical ring resonator bio/chemical sensors , 2007, SPIE LASE.

[22]  Brent E. Little,et al.  Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators , 1999 .

[23]  Stephen Arnold,et al.  Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer , 2006 .

[24]  Karsten Buse,et al.  Fabrication and characterization of whispering-gallery-mode resonators made of polymers. , 2009, Optics express.

[25]  Sumei Wang,et al.  Ultrasensitive chemical sensors based on whispering gallery modes in a microsphere coated with zeolite. , 2010, Applied optics.

[26]  R L Hightower,et al.  Resonant Mie scattering from a layered sphere. , 1988, Applied optics.