TAIL BOUNDS FOR ALL EIGENVALUES OF A SUM OF RANDOM MATRICES

This work introduces the minimax Laplace transform method, a modification of the cumulant-based matrix Laplace transform method developed in [Tro11c] that yields both upper and lower bounds on each eigenvalue of a sum of random self-adjoint matrices. This machinery is used to derive eigenvalue analogs of the classical Chernoff, Bennett, and Bernstein bounds. Two examples demonstrate the efficacy of the minimax Laplace transform. The first concerns the effects of column sparsification on the spectrum of a matrix with orthonormal rows. Here, the behavior of the singular values can be described in terms of coherence-like quantities. The second example addresses the question of relative accuracy in the estimation of eigenvalues of the covariance matrix of a random process. Standard results on the convergence of sample covariance matrices provide bounds on the number of samples needed to obtain relative accuracy in the spectral norm, but these results only guarantee relative accuracy in the estimate of the maximum eigenvalue. The minimax Laplace transform argument establishes that if the lowest eigenvalues decay sufficiently fast, Ω(e^(-2)κ^2_l l log p) samples, where κ_l = λ_1(C)/λ_l(C), are sufficient to ensure that the dominant l eigenvalues of the covariance matrix of a N(0,C) random vector are estimated to within a factor of 1 ± e with high probability.

[1]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[2]  U. Grenander Probabilities on Algebraic Structures , 1964 .

[3]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[4]  L. Arnold,et al.  On Wigner's semicircle law for the eigenvalues of random matrices , 1971 .

[5]  E. Lieb Convex trace functions and the Wigner-Yanase-Dyson conjecture , 1973 .

[6]  S. Geman A Limit Theorem for the Norm of Random Matrices , 1980 .

[7]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[8]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[9]  Z. Bai,et al.  Convergence to the Semicircle Law , 1988 .

[10]  Z. Bai,et al.  On the limit of the largest eigenvalue of the large dimensional sample covariance matrix , 1988 .

[11]  Z. D. Bai,et al.  Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix , 1988 .

[12]  J. W. Silverstein,et al.  A note on the largest eigenvalue of a large dimensional sample covariance matrix , 1988 .

[13]  S. Szarek Spaces with large distance to l∞n and random matrices , 1990 .

[14]  D. Voiculescu Limit laws for Random matrices and free products , 1991 .

[15]  G. Pisier,et al.  Non commutative Khintchine and Paley inequalities , 1991 .

[16]  Z. Bai,et al.  Convergence Rate of Expected Spectral Distributions of Large Random Matrices. Part II. Sample Covariance Matrices , 1993 .

[17]  Z. Bai,et al.  Convergence rate of expected spectral distributions of large random matrices , 2008 .

[18]  Z. Bai,et al.  Convergence Rate of Expected Spectral Distributions of Large Random Matrices. Part I. Wigner Matrices , 1993 .

[19]  Jörg M. Wills,et al.  Handbook of Convex Geometry , 1993 .

[20]  R. Connelly In Handbook of Convex Geometry , 1993 .

[21]  J. Lindenstrauss,et al.  The Local Theory of Normed Spaces and its Applications to Convexity , 1993 .

[22]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.

[23]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[24]  Peter Sarnak,et al.  Zeros of principal $L$-functions and random matrix theory , 1996 .

[25]  M. Rudelson Random Vectors in the Isotropic Position , 1996, math/9608208.

[26]  Zhidong Bai,et al.  A note on the convergence rate of the spectral distributions of large random matrices , 1997 .

[27]  T. Guhr,et al.  RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.

[28]  E. Giné,et al.  Decoupling: From Dependence to Independence , 1998 .

[29]  Michael V. Berry,et al.  The Riemann Zeros and Eigenvalue Asymptotics , 1999, SIAM Rev..

[30]  Zhidong Bai,et al.  Remarks on the Convergence Rate of the Spectral Distributions of Wigner Matrices , 1999 .

[31]  N. Alon,et al.  On the concentration of eigenvalues of random symmetric matrices , 2000, math-ph/0009032.

[32]  A. Guionnet,et al.  CONCENTRATION OF THE SPECTRAL MEASURE FOR LARGE MATRICES , 2000 .

[33]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[34]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[35]  Dimitris Achlioptas,et al.  Fast computation of low rank matrix approximations , 2001, STOC '01.

[36]  J. Lindenstrauss,et al.  Handbook of geometry of Banach spaces , 2001 .

[37]  S. Szarek,et al.  Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .

[38]  Rudolf Ahlswede,et al.  Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.

[39]  Dimitris Achlioptas,et al.  Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..

[40]  Jian-Feng Yao,et al.  Convergence Rates of Spectral Distributions of Large Sample Covariance Matrices , 2003, SIAM J. Matrix Anal. Appl..

[41]  Arup Bose,et al.  A New Method for Bounding Rates of Convergence of Empirical Spectral Distributions , 2004 .

[42]  Antonia Maria Tulino,et al.  Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.

[43]  Jonas Gustavsson Gaussian fluctuations of eigenvalues in the GUE , 2004 .

[44]  M. Meckes Concentration of norms and eigenvalues of random matrices , 2002, math/0211192.

[45]  Santosh S. Vempala,et al.  The Random Projection Method , 2005, DIMACS Series in Discrete Mathematics and Theoretical Computer Science.

[46]  R. Lata,et al.  SOME ESTIMATES OF NORMS OF RANDOM MATRICES , 2004 .

[47]  Petros Drineas,et al.  On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning , 2005, J. Mach. Learn. Res..

[48]  Zizhong Chen,et al.  Condition Numbers of Gaussian Random Matrices , 2005, SIAM J. Matrix Anal. Appl..

[49]  E. Lieb,et al.  Stronger subadditivity of entropy , 2004, math-ph/0412009.

[50]  R. Latala Some estimates of norms of random matrices , 2005 .

[51]  M. Talagrand The Generic chaining : upper and lower bounds of stochastic processes , 2005 .

[52]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[53]  S. Mendelson,et al.  On singular values of matrices with independent rows , 2006 .

[54]  I. Johnstone High Dimensional Statistical Inference and Random Matrices , 2006, math/0611589.

[55]  Noureddine El Karoui Spectrum estimation for large dimensional covariance matrices using random matrix theory , 2006, math/0609418.

[56]  P. Deift Universality for mathematical and physical systems , 2006, math-ph/0603038.

[57]  J.W. Silverstein,et al.  Theory of Large Dimensional Random Matrices for Engineers , 2006, 2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications.

[58]  Mark Rudelson,et al.  Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.

[59]  Noureddine El Karoui Tracy–Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices , 2005, math/0503109.

[60]  Arkadi Nemirovski,et al.  Sums of random symmetric matrices and quadratic optimization under orthogonality constraints , 2007, Math. Program..

[61]  M. Rudelson,et al.  The least singular value of a random square matrix is O(n−1/2) , 2008, 0805.3407.

[62]  Z. Bai,et al.  METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES, A REVIEW , 2008 .

[63]  Zhidong Bai,et al.  CONVERGENCE RATE OF EXPECTED SPECTRAL DISTRIBUTIONS OF LARGE RANDOM MATRICES PART II: SAMPLE COVARIANCE MATRICES , 2008 .

[64]  Klas Markström,et al.  Expansion properties of random Cayley graphs and vertex transitive graphs via matrix martingales , 2008, Random Struct. Algorithms.

[65]  Shamgar Gurevich,et al.  Statistical RIP and Semi-Circle Distribution of Incoherent Dictionaries , 2009, ArXiv.

[66]  Nikhil Srivastava,et al.  Graph sparsification by effective resistances , 2008, SIAM J. Comput..

[67]  J. Tropp On the conditioning of random subdictionaries , 2008 .

[68]  Terence Tao,et al.  Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.

[69]  K. Markström,et al.  Expansion properties of random Cayley graphs and vertex transitive graphs via matrix martingales , 2008 .

[70]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[71]  R. Adamczak,et al.  Sharp bounds on the rate of convergence of the empirical covariance matrix , 2010, 1012.0294.

[72]  R. Oliveira Concentration of the adjacency matrix and of the Laplacian in random graphs with independent edges , 2009, 0911.0600.

[73]  R. Vershynin How Close is the Sample Covariance Matrix to the Actual Covariance Matrix? , 2010, 1004.3484.

[74]  H. Yau,et al.  Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.

[75]  Petros Drineas,et al.  Effective Resistances, Statistical Leverage, and Applications to Linear Equation Solving , 2010, ArXiv.

[76]  Cui Jing-wu Random Matrix Theory and Wireless Communication , 2010 .

[77]  Terence Tao,et al.  Random matrices: Localization of the eigenvalues and the necessity of four moments , 2010 .

[78]  Sham M. Kakade,et al.  Dimension-free tail inequalities for sums of random matrices , 2011, ArXiv.

[79]  G. Pan,et al.  A NOTE ON RATE OF CONVERGENCE IN PROBABILITY TO SEMICIRCULAR LAW , 2011, 1105.3056.

[80]  J. Tropp User-Friendly Tail Bounds for Matrix Martingales , 2011 .

[81]  Michael W. Mahoney Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..

[82]  S. Muthukrishnan,et al.  Faster least squares approximation , 2007, Numerische Mathematik.

[83]  J. Tropp FREEDMAN'S INEQUALITY FOR MATRIX MARTINGALES , 2011, 1101.3039.

[84]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[85]  Anthony Man-Cho So,et al.  Moment inequalities for sums of random matrices and their applications in optimization , 2011, Math. Program..

[86]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[87]  Benjamin Recht,et al.  A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..

[88]  Brendan Farrell Limiting Empirical Singular Value Distribution of Restrictions of Discrete Fourier Transform Matrices , 2011 .

[89]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[90]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[91]  Gitta Kutyniok,et al.  1 . 2 Sparsity : A Reasonable Assumption ? , 2012 .

[92]  R. Vershynin,et al.  Covariance estimation for distributions with 2+ε moments , 2011, 1106.2775.