TAIL BOUNDS FOR ALL EIGENVALUES OF A SUM OF RANDOM MATRICES
暂无分享,去创建一个
[1] E. Wigner. Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .
[2] U. Grenander. Probabilities on Algebraic Structures , 1964 .
[3] V. Marčenko,et al. DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .
[4] L. Arnold,et al. On Wigner's semicircle law for the eigenvalues of random matrices , 1971 .
[5] E. Lieb. Convex trace functions and the Wigner-Yanase-Dyson conjecture , 1973 .
[6] S. Geman. A Limit Theorem for the Norm of Random Matrices , 1980 .
[7] R. Muirhead. Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.
[8] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[9] Z. Bai,et al. Convergence to the Semicircle Law , 1988 .
[10] Z. Bai,et al. On the limit of the largest eigenvalue of the large dimensional sample covariance matrix , 1988 .
[11] Z. D. Bai,et al. Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix , 1988 .
[12] J. W. Silverstein,et al. A note on the largest eigenvalue of a large dimensional sample covariance matrix , 1988 .
[13] S. Szarek. Spaces with large distance to l∞n and random matrices , 1990 .
[14] D. Voiculescu. Limit laws for Random matrices and free products , 1991 .
[15] G. Pisier,et al. Non commutative Khintchine and Paley inequalities , 1991 .
[16] Z. Bai,et al. Convergence Rate of Expected Spectral Distributions of Large Random Matrices. Part II. Sample Covariance Matrices , 1993 .
[17] Z. Bai,et al. Convergence rate of expected spectral distributions of large random matrices , 2008 .
[18] Z. Bai,et al. Convergence Rate of Expected Spectral Distributions of Large Random Matrices. Part I. Wigner Matrices , 1993 .
[19] Jörg M. Wills,et al. Handbook of Convex Geometry , 1993 .
[20] R. Connelly. In Handbook of Convex Geometry , 1993 .
[21] J. Lindenstrauss,et al. The Local Theory of Normed Spaces and its Applications to Convexity , 1993 .
[22] C. Tracy,et al. Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.
[23] M. Talagrand. Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.
[24] Peter Sarnak,et al. Zeros of principal $L$-functions and random matrix theory , 1996 .
[25] M. Rudelson. Random Vectors in the Isotropic Position , 1996, math/9608208.
[26] Zhidong Bai,et al. A note on the convergence rate of the spectral distributions of large random matrices , 1997 .
[27] T. Guhr,et al. RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.
[28] E. Giné,et al. Decoupling: From Dependence to Independence , 1998 .
[29] Michael V. Berry,et al. The Riemann Zeros and Eigenvalue Asymptotics , 1999, SIAM Rev..
[30] Zhidong Bai,et al. Remarks on the Convergence Rate of the Spectral Distributions of Wigner Matrices , 1999 .
[31] N. Alon,et al. On the concentration of eigenvalues of random symmetric matrices , 2000, math-ph/0009032.
[32] A. Guionnet,et al. CONCENTRATION OF THE SPECTRAL MEASURE FOR LARGE MATRICES , 2000 .
[33] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[34] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis , 2001 .
[35] Dimitris Achlioptas,et al. Fast computation of low rank matrix approximations , 2001, STOC '01.
[36] J. Lindenstrauss,et al. Handbook of geometry of Banach spaces , 2001 .
[37] S. Szarek,et al. Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .
[38] Rudolf Ahlswede,et al. Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.
[39] Dimitris Achlioptas,et al. Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..
[40] Jian-Feng Yao,et al. Convergence Rates of Spectral Distributions of Large Sample Covariance Matrices , 2003, SIAM J. Matrix Anal. Appl..
[41] Arup Bose,et al. A New Method for Bounding Rates of Convergence of Empirical Spectral Distributions , 2004 .
[42] Antonia Maria Tulino,et al. Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.
[43] Jonas Gustavsson. Gaussian fluctuations of eigenvalues in the GUE , 2004 .
[44] M. Meckes. Concentration of norms and eigenvalues of random matrices , 2002, math/0211192.
[45] Santosh S. Vempala,et al. The Random Projection Method , 2005, DIMACS Series in Discrete Mathematics and Theoretical Computer Science.
[46] R. Lata,et al. SOME ESTIMATES OF NORMS OF RANDOM MATRICES , 2004 .
[47] Petros Drineas,et al. On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning , 2005, J. Mach. Learn. Res..
[48] Zizhong Chen,et al. Condition Numbers of Gaussian Random Matrices , 2005, SIAM J. Matrix Anal. Appl..
[49] E. Lieb,et al. Stronger subadditivity of entropy , 2004, math-ph/0412009.
[50] R. Latala. Some estimates of norms of random matrices , 2005 .
[51] M. Talagrand. The Generic chaining : upper and lower bounds of stochastic processes , 2005 .
[52] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[53] S. Mendelson,et al. On singular values of matrices with independent rows , 2006 .
[54] I. Johnstone. High Dimensional Statistical Inference and Random Matrices , 2006, math/0611589.
[55] Noureddine El Karoui. Spectrum estimation for large dimensional covariance matrices using random matrix theory , 2006, math/0609418.
[56] P. Deift. Universality for mathematical and physical systems , 2006, math-ph/0603038.
[57] J.W. Silverstein,et al. Theory of Large Dimensional Random Matrices for Engineers , 2006, 2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications.
[58] Mark Rudelson,et al. Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.
[59] Noureddine El Karoui. Tracy–Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices , 2005, math/0503109.
[60] Arkadi Nemirovski,et al. Sums of random symmetric matrices and quadratic optimization under orthogonality constraints , 2007, Math. Program..
[61] M. Rudelson,et al. The least singular value of a random square matrix is O(n−1/2) , 2008, 0805.3407.
[62] Z. Bai,et al. METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES, A REVIEW , 2008 .
[63] Zhidong Bai,et al. CONVERGENCE RATE OF EXPECTED SPECTRAL DISTRIBUTIONS OF LARGE RANDOM MATRICES PART II: SAMPLE COVARIANCE MATRICES , 2008 .
[64] Klas Markström,et al. Expansion properties of random Cayley graphs and vertex transitive graphs via matrix martingales , 2008, Random Struct. Algorithms.
[65] Shamgar Gurevich,et al. Statistical RIP and Semi-Circle Distribution of Incoherent Dictionaries , 2009, ArXiv.
[66] Nikhil Srivastava,et al. Graph sparsification by effective resistances , 2008, SIAM J. Comput..
[67] J. Tropp. On the conditioning of random subdictionaries , 2008 .
[68] Terence Tao,et al. Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.
[69] K. Markström,et al. Expansion properties of random Cayley graphs and vertex transitive graphs via matrix martingales , 2008 .
[70] J. W. Silverstein,et al. Spectral Analysis of Large Dimensional Random Matrices , 2009 .
[71] R. Adamczak,et al. Sharp bounds on the rate of convergence of the empirical covariance matrix , 2010, 1012.0294.
[72] R. Oliveira. Concentration of the adjacency matrix and of the Laplacian in random graphs with independent edges , 2009, 0911.0600.
[73] R. Vershynin. How Close is the Sample Covariance Matrix to the Actual Covariance Matrix? , 2010, 1004.3484.
[74] H. Yau,et al. Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.
[75] Petros Drineas,et al. Effective Resistances, Statistical Leverage, and Applications to Linear Equation Solving , 2010, ArXiv.
[76] Cui Jing-wu. Random Matrix Theory and Wireless Communication , 2010 .
[77] Terence Tao,et al. Random matrices: Localization of the eigenvalues and the necessity of four moments , 2010 .
[78] Sham M. Kakade,et al. Dimension-free tail inequalities for sums of random matrices , 2011, ArXiv.
[79] G. Pan,et al. A NOTE ON RATE OF CONVERGENCE IN PROBABILITY TO SEMICIRCULAR LAW , 2011, 1105.3056.
[80] J. Tropp. User-Friendly Tail Bounds for Matrix Martingales , 2011 .
[81] Michael W. Mahoney. Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..
[82] S. Muthukrishnan,et al. Faster least squares approximation , 2007, Numerische Mathematik.
[83] J. Tropp. FREEDMAN'S INEQUALITY FOR MATRIX MARTINGALES , 2011, 1101.3039.
[84] David Gross,et al. Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.
[85] Anthony Man-Cho So,et al. Moment inequalities for sums of random matrices and their applications in optimization , 2011, Math. Program..
[86] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[87] Benjamin Recht,et al. A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..
[88] Brendan Farrell. Limiting Empirical Singular Value Distribution of Restrictions of Discrete Fourier Transform Matrices , 2011 .
[89] Joel A. Tropp,et al. User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..
[90] Roman Vershynin,et al. Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.
[91] Gitta Kutyniok,et al. 1 . 2 Sparsity : A Reasonable Assumption ? , 2012 .
[92] R. Vershynin,et al. Covariance estimation for distributions with 2+ε moments , 2011, 1106.2775.