Design of modern nanofabrication facilities

We present a set of practical rules critical for designing and building a modern nanotechnology laboratory, focused on photonic applications in a cleanroom environment. We show the impacts on time, cost and quality of early design decisions and its importance on achieving the final fully functional laboratory. Best practice examples are presented for setting up a modern laboratory/facility, following analysis of the time, cost and quality constraints. The case study presented is the engineering and architectural solution of the nanofabrication cleanroom facility in the Advanced Technology Centre at Swinburne University of Technology, Australia. Set of practical rules is established for the cost and time efficient set up of the nanotechnology facilities for the research and development.

[1]  Saulius Juodkazis,et al.  Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications , 2009 .

[2]  S. Juodkazis,et al.  Templating and Replication of Spiral Photonic Crystals for Silicon Photonics , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  S. Wada,et al.  Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection. , 2008, Optics express.

[4]  Saulius Juodkazis,et al.  Surface defect mediated electron hopping between nanoparticles separated by a nano-gap , 2010 .

[5]  Daniel Day,et al.  Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses. , 2005, Optics express.

[6]  Saulius Juodkazis,et al.  Three-Dimensional Micro-and Nano-Structuring of Materials by Tightly Focused Laser Radiation , 2008 .

[7]  Saulius Juodkazis,et al.  Intangible pointlike tracers for liquid-crystal-based microsensors , 2010 .

[8]  Jerry Percifield Built to last: designing facilities that support the rapidly changing technology of optics and nanoscience , 2005, SPIE Optics + Photonics.

[9]  Saulius Juodkazis,et al.  Flexural Rigidity of a Single Microtubule , 2002 .

[10]  William Wilson,et al.  Why does one nano lab cost more than another? , 2005, SPIE Optics + Photonics.

[11]  Daniel Day,et al.  Ultra‐Low Energy Threshold for Cancer Photothermal Therapy Using Transferrin‐Conjugated Gold Nanorods , 2008 .

[12]  Saulius Juodkazis,et al.  Surface-texturing of sapphire by femtosecond laser pulses for photonic applications , 2010 .

[13]  Min Gu,et al.  Five-dimensional optical recording mediated by surface plasmons in gold nanorods , 2009, Nature.

[14]  Donna Clare,et al.  Nanotechnology on a dime: building affordable research facilities , 2005, SPIE Optics + Photonics.

[15]  M. Straub,et al.  Void channel microstructures in resin solids as an efficient way to infrared photonic crystals , 2003 .

[16]  Min Gu,et al.  Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization. , 2002, Optics letters.

[17]  Mark L. Smith,et al.  The Vanderbilt University nanoscale science and engineering fabrication laboratory , 2005, SPIE Optics + Photonics.

[18]  Saulius Juodkazis,et al.  Three-Dimensional Structuring of Resists and Resins by Direct Laser Writing and Holographic Recording , 2007 .

[19]  Saulius Juodkazis,et al.  Optical angular manipulation of liquid crystal droplets in laser tweezers , 2009 .

[20]  Saulius Juodkazis,et al.  Sierpin´ski fractal plasmonic nanoantennas , 2011 .

[21]  Daniel Day,et al.  Formation of voids in a doped polymethylmethacrylate polymer , 2002 .

[22]  Saulius Juodkazis,et al.  Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses , 2003 .

[23]  Min Gu,et al.  Two-photon fluorescence endoscopy with a micro-optic scanning head. , 2003, Optics letters.

[24]  Saulius Juodkazis,et al.  Sculpturing of photonic crystals by ion beam lithography: towards complete photonic bandgap at visible wavelengths. , 2011, Optics express.

[25]  Saulius Juodkazis,et al.  Tailoring spectral position and width of field enhancement by focused ion‐beam patterning of plasmonic nanoparticles , 2010 .

[26]  Daniel Day,et al.  A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal , 2008 .

[27]  M. Rutkauskas,et al.  Formation of collimated beams behind the woodpile photonic crystal , 2011 .

[28]  Saulius Juodkazis,et al.  Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8 , 2006 .

[29]  Saulius Juodkazis,et al.  Photonic crystals approach visible-light functionality , 2011 .

[30]  Saulius Juodkazis,et al.  Photoelectrolysis of water: Solar hydrogen--achievements and perspectives. , 2010, Optics express.

[31]  Saulius Juodkazis,et al.  Tailoring and characterization of photonic crystals , 2001 .

[32]  Saulius Juodkazis,et al.  3D-tailored gold nanoparticles for light field enhancement and harvesting over visible-IR spectral range , 2011 .

[33]  S. Juodkazis,et al.  Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback , 2011, Nanotechnology.

[34]  S. Juodkazis,et al.  Photophysics and photochemistry of a laser manipulated microparticle , 1999 .

[35]  Saulius Juodkazis,et al.  FDTD modeling to enhance the performance of an organic solar cell embedded with gold nanoparticles , 2011 .

[36]  Saulius Juodkazis,et al.  Laser-Matter Interaction in Transparent Materials: Confined Micro-explosion and Jet Formation , 2010 .

[37]  Min Gu,et al.  Laser trapping and manipulation under focused evanescent wave illumination , 2004 .

[38]  Saulius Juodkazis,et al.  Fast optical switching by a laser-manipulated microdroplet of liquid crystal , 1999 .

[39]  Min Gu,et al.  Microfluidic tunable photonic band-gap device , 2004 .