Hadamard matrices of order 32 and extremal ternary self-dual codes

A ternary self-dual code can be constructed from a Hadamard matrix of order congruent to 8 modulo 12. In this paper, we show that the Paley–Hadamard matrix is the only Hadamard matrix of order 32 which gives an extremal self-dual code of length 64. This gives a coding theoretic characterization of the Paley–Hadamard matrix of order 32.

[1]  Masaaki Harada,et al.  New extremal ternary self-dual codes , 1998, Australas. J Comb..

[2]  Behruz Tayfeh-Rezaie,et al.  On the classification of Hadamard matrices of order 32 , 2010 .

[3]  R. Brualdi,et al.  Handbook Of Coding Theory , 2011 .

[4]  Hiroshi Kimura,et al.  Classification of Hadamard matrices of order 28 , 1994, Discret. Math..

[5]  Suat Karadeniz,et al.  Self-dual codes over F2+uF2+vF2+uvF2 , 2010, J. Frankl. Inst..

[6]  E. M. Rains,et al.  Self-Dual Codes , 2002, math/0208001.

[7]  N. J. A. Sloane,et al.  Self-dual codes over GF(3) and GF(4) of length not exceeding 16 , 1979, IEEE Trans. Inf. Theory.

[8]  N. J. A. Sloane,et al.  An Upper Bound for Self-Dual Codes , 1973, Inf. Control..