Quadratic Upper Bounds on the Erdős-Pósa Property for a Generalization of Packing and Covering Cycles
暂无分享,去创建一个
[1] Carsten Thomassen,et al. The Erdős–Pósa Property for Odd Cycles in Graphs of Large Connectivity , 2001, Comb..
[2] Bruce A. Reed,et al. The Erdős–Pósa Property For Long Circuits , 2007, Comb..
[3] Paul D. Seymour,et al. Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.
[4] J. Bólyai,et al. Unboundedness for Generalized Odd Cyclic Transversality , 2009 .
[5] James F. Geelen,et al. The Erdös-Pósa property for matroid circuits , 2009, J. Comb. Theory, Ser. B.
[6] Bruce A. Reed,et al. The Erdős–Pósa Property for Odd Cycles in Highly Connected Graphs , 2001, Comb..
[7] Etienne Birmelé,et al. Brambles, Prisms and Grids , 2006 .
[8] Bert Gerards,et al. Disjoint cocircuits in matroids with large rank , 2003, J. Comb. Theory, Ser. B.
[9] Louay Bazzi,et al. On the Solution of Linear Recurrence Equations , 1998, Comput. Optim. Appl..
[10] Dimitrios M. Thilikos,et al. Strengthening Erdös-Pósa property for minor-closed graph classes , 2011, J. Graph Theory.
[11] Robin Thomas,et al. Graph Searching and a Min-Max Theorem for Tree-Width , 1993, J. Comb. Theory, Ser. B.
[12] L. Pósa,et al. On Independent Circuits Contained in a Graph , 1965, Canadian Journal of Mathematics.
[13] B. Mohar,et al. Graph Minors , 2009 .
[14] Bruce A. Reed,et al. Polynomial treewidth forces a large grid-like-minor , 2008, Eur. J. Comb..
[15] G. Szekeres,et al. A combinatorial problem in geometry , 2009 .
[16] Ken-ichi Kawarabayashi,et al. The Erdos-Pósa property for vertex- and edge-disjoint odd cycles in graphs on orientable surfaces , 2007, Discret. Math..
[17] J. Adrian Bondy,et al. OSA PROPERTY FOR LONG CIRCUITS , 2007 .
[18] Frank Harary,et al. Graph Theory , 2016 .
[19] Carsten Thomassen,et al. On the presence of disjoint subgraphs of a specified type , 1988, J. Graph Theory.