105 K Wide Room Temperature Spin Transition Memory Due to a Supramolecular Latch Mechanism

Little is known about the mechanisms behind the bistability (memory) of molecular spin transition compounds over broad temperature ranges (>100 K). To address this point, we report on a new discrete FeII neutral complex [FeIIL2]0 (1) based on a novel asymmetric tridentate ligand 2-(5-(3-methoxy-4H-1,2,4-triazol-3-yl)-6-(1H-pyrazol-1-yl))pyridine (L). Due to the asymmetric cone-shaped form, in the lattice, the formed complex molecules stack into a one-dimensional (1D) supramolecular chain. In the case of the rectangular supramolecular arrangement of chains in methanolates 1-A and 1-B (both orthorhombic, Pbcn) differing, respectively, by bent and extended spatial conformations of the 3-methoxy groups (3MeO), a moderate cooperativity is observed. In contrast, the hexagonal-like arrangement of supramolecular chains in polymorph 1-C (monoclinic, P21/c) results in steric coupling of the transforming complex species with the peripheral flipping 3MeO group. The group acts as a supramolecular latch, locking the huge geometric distortion of complex 1 and in turn the trigonal distortion of the central FeII ion in the high-spin state, thereby keeping it from the transition to the low-spin state over a large thermal range. Analysis of the crystal packing of 1-C reveals significantly changing patterns of close intermolecular interactions on going between the phases substantiated by the energy framework analysis. The detected supramolecular mechanism leads to a record-setting robust 105 K wide hysteresis spanning the room temperature region and an atypically large TLIESST relaxation value of 104 K of the photoexcited high-spin state. This work highlights a viable pathway toward a new generation of cleverly designed molecular memory materials.

[1]  Guoming Wang,et al.  Achieving large thermal hysteresis in an anthracene-based manganese(II) complex via photo-induced electron transfer , 2022, Nature Communications.

[2]  W. Nicolazzi,et al.  Sequential Activation of Molecular and Macroscopic Spin‐State Switching within the Hysteretic Region Following Pulsed Light Excitation , 2021, Advanced materials.

[3]  Christopher H. Hendon,et al.  Cooperativity and Metal–Linker Dynamics in Spin Crossover Framework Fe(1,2,3-triazolate)2 , 2021, Chemistry of Materials.

[4]  Tao Jiang,et al.  Asymmetric Design of Spin-Crossover Complexes to Increase the Volatility for Surface Deposition. , 2021, Journal of the American Chemical Society.

[5]  M. J. Turner,et al.  CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals , 2021, Journal of applied crystallography.

[6]  H. Oberhofer,et al.  Cooperative Large-Hysteresis Spin-Crossover Transition in the Iron(II) Triazolate [Fe(ta)2] Metal-Organic Framework. , 2020, Inorganic chemistry.

[7]  G. Molnár,et al.  Thermochromic meltable materials with "reverse spin transition" controlled by chemical design. , 2020, Angewandte Chemie.

[8]  Xiaoyi Zhang,et al.  Tracking the Light-induced Excited-State Dynamics and Structural Configurations of an Extraordinarily Long-lived Metastable State at Room Temperature. , 2020, Chemistry.

[9]  M. Ruben,et al.  Sublimable Spin‐Crossover Complexes: From Spin‐State Switching to Molecular Devices , 2019, Angewandte Chemie.

[10]  E. Collet,et al.  Solvatomorphism-Induced 45 K Hysteresis Width in a Spin-Crossover Mononuclear Compound. , 2018, Chemistry.

[11]  P. Rosa,et al.  A critical review of the T(LIESST) temperature in spin crossover materials − What it is and what it is not , 2018, Chemistry Squared.

[12]  Juan Yuan,et al.  Rhodamine 6G-Labeled Pyridyl Aroylhydrazone Fe(II) Complex Exhibiting Synergetic Spin Crossover and Fluorescence. , 2018, Journal of the American Chemical Society.

[13]  Andrei A. Gakh,et al.  Molecular Devices , 2018 .

[14]  W. Nicolazzi,et al.  Spin Crossover Nanomaterials: From Fundamental Concepts to Devices , 2018, Advanced materials.

[15]  S. Agarwal,et al.  Spin-Crossover Iron(II) Coordination Polymer with Fluorescent Properties: Correlation between Emission Properties and Spin State. , 2018, Journal of the American Chemical Society.

[16]  J. Real,et al.  Chiral and Racemic Spin Crossover Polymorphs in a Family of Mononuclear Iron(II) Compounds. , 2017, Inorganic chemistry.

[17]  R. Miller,et al.  Structural Dynamics upon Photoexcitation in a Spin Crossover Crystal Probed with Femtosecond Electron Diffraction. , 2017, Angewandte Chemie.

[18]  E. Coronado,et al.  Nonanuclear Spin-Crossover Complex Containing Iron(II) and Iron(III) Based on a 2,6-Bis(pyrazol-1-yl)pyridine Ligand Functionalized with a Carboxylate Group. , 2016, Inorganic chemistry.

[19]  Marinela M. Dîrtu,et al.  Fe(II) Spin Transition Materials Including an Amino-Ester 1,2,4-Triazole Derivative, Operating at, below, and above Room Temperature. , 2016, Inorganic chemistry.

[20]  G. Molnár,et al.  Switchable molecule-based materials for micro- and nanoscale actuating applications: Achievements and prospects , 2016 .

[21]  J. Real,et al.  Meltable Spin Transition Molecular Materials with Tunable Tc and Hysteresis Loop Width. , 2015, Angewandte Chemie.

[22]  M. Mayor,et al.  Single-Molecule Spin Switch Based on Voltage-Triggered Distortion of the Coordination Sphere. , 2015, Angewandte Chemie.

[23]  G. Molnár,et al.  Homoleptic Iron(II) Complexes with the Ionogenic Ligand 6,6'-Bis(1H-tetrazol-5-yl)-2,2'-bipyridine: Spin Crossover Behavior in a Singular 2D Spin Crossover Coordination Polymer. , 2015, Inorganic chemistry.

[24]  S. Alvarez,et al.  Spin state behavior of iron(II)/dipyrazolylpyridine complexes. New insights from crystallographic and solution measurements , 2015 .

[25]  M. J. Turner,et al.  Energy frameworks: insights into interaction anisotropy and the mechanical properties of molecular crystals. , 2015, Chemical communications.

[26]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[27]  M. Halcrow Spin-crossover Compounds with Wide Thermal Hysteresis , 2014 .

[28]  I. Korolkov,et al.  Unprecedented bistability domain and interplay between spin crossover and polymorphism in a mononuclear iron(II) complex. , 2014, Dalton transactions.

[29]  H. Wende,et al.  Room temperature switching of a neutral molecular iron(II) complex. , 2013, Chemical communications.

[30]  M. Castro,et al.  Unprecedented multi-stable spin crossover molecular material with two thermal memory channels. , 2013, Chemistry.

[31]  Jean-François Létard,et al.  Crystal Structures and Spin Crossover in the Polymeric Material [Fe(Htrz)2(trz)](BF4) Including Coherent-Domain Size Reduction Effects , 2013 .

[32]  S. Tolbert,et al.  Crystal-packing trends for a series of 6,9,12,15,18-pentaaryl-1-hydro[60]fullerenes. , 2012, Chemistry.

[33]  S. Teat,et al.  Coupled crystallographic order-disorder and spin state in a bistable molecule: multiple transition dynamics. , 2011, Chemistry.

[34]  Giampiero Ruani,et al.  Thin deposits and patterning of room-temperature-switchable one-dimensional spin-crossover compounds. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[35]  B. C. Garrett,et al.  Magnetic Bistability of Molecules in Homogeneous Solution at Room Temperature , 2011, Science.

[36]  G. Jonusauskas,et al.  Mechanism for optical switching of the spin crossover [Fe(NH(2)-trz)(3)](Br)(2).3H(2)O compound at room temperature. , 2010, Physical chemistry chemical physics : PCCP.

[37]  E. Freysz,et al.  Room temperature study of the optical switching of a spin crossover compound inside its thermal hysteresis loop , 2010 .

[38]  M. Halcrow Iron(II) complexes of 2,6-di(pyrazol-1-yl)pyridines—A versatile system for spin-crossover research , 2009 .

[39]  U. Pietsch,et al.  Liquid crystalline phase transition induces spin crossover in a polyelectrolyte amphiphile complex. , 2009, Journal of the American Chemical Society.

[40]  J. Obel,et al.  An iron(II) spin-crossover complex with a 70 K wide thermal hysteresis loop. , 2008, Angewandte Chemie.

[41]  Philipp Gütlich,et al.  Spin-crossover nanocrystals with magnetic, optical, and structural bistability near room temperature. , 2008, Angewandte Chemie.

[42]  Jean-François Létard,et al.  Photomagnetism of iron(II) spin crossover complexes—the T(LIESST) approach , 2006 .

[43]  Kiyoshi Kanie,et al.  Stacking of conical molecules with a fullerene apex into polar columns in crystals and liquid crystals , 2002, Nature.

[44]  K. Hashimoto,et al.  Control of charge-transfer-induced spin transition temperature on cobalt-iron Prussian blue analogues. , 2002, Inorganic chemistry.

[45]  Fujita,et al.  Room-Temperature Magnetic Bistability in Organic Radical Crystals. , 1999, Science.

[46]  A. Goeta,et al.  Structural, Magnetic, and Photomagnetic Studies of a Mononuclear Iron(II) Derivative Exhibiting an Exceptionally Abrupt Spin Transition. Light-Induced Thermal Hysteresis Phenomenon. , 1998, Inorganic chemistry.

[47]  O. Kahn,et al.  Spin-Transition Polymers: From Molecular Materials Toward Memory Devices , 1998 .

[48]  Philipp Gütlich,et al.  Thermal and Optical Switching of Iron(II) Complexes , 1994 .

[49]  Olivier Kahn,et al.  Spin Transition Molecular Materials for displays and data recording , 1992 .

[50]  P. Gütlich,et al.  Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system , 1984 .

[51]  K. Hashimoto,et al.  A surprisingly large thermal hysteresis loop in a reversible phase transition of RbxMn[Fe(CN)6](x+2)/3.zH2O , 2005 .

[52]  X. You,et al.  A stacking spin-crossover iron(II) compound with a large hysteresis† , 1998 .