Structure-activity relationship analysis of bufadienolide-induced in vitro growth inhibitory effects on mouse and human cancer cells.

The in vitro growth inhibitory effects of 27 bufadienolides and eight degradation products, with two cardenolides (ouabain and digoxin) chosen as reference compounds, were analyzed by means of an MTT colorimetric assay in six human and two mouse cancer cell lines. A structure-activity analysis was then performed to highlight the most important substituents relating to the in vitro growth inhibitory activity of bufadienolides in cancer cells. Thus, the current study revealed that various bufadienolides, including gamabufotalin rhamnoside (1a), bufotalin (2a), and hellebrin (3a), displayed higher growth inhibitory activities for various human cancer cell lines when compared to ouabain and digoxin. Gamabufotalin rhamnoside (1a) was the only compound that displayed growth inhibitory effects of <1 μM in mouse cancer cells that expressed mutated forms of the Na(+),K(+)-ATPase α-1 subunit. In addition, all genins and degradation products displayed weaker (if any) in vitro growth inhibitory effects on cancer cells when compared to their respective glycosylated homologue, with the exception of hellebrigenin (3b), which was as active as hellebrin (3a).

[1]  Satya P. Gupta Quantitative structure-activity relationship studies on Na+,K(+)-ATPase inhibitors. , 2012, Chemical reviews.

[2]  R. Kiss,et al.  Cardiotonic steroids-mediated targeting of the Na(+)/K(+)-ATPase to combat chemoresistant cancers. , 2012, Current medicinal chemistry.

[3]  Hong-bo Hu,et al.  Biotransformation of bufadienolides by cell suspension cultures of Saussurea involucrata. , 2011, Phytochemistry.

[4]  Edward Giovannucci,et al.  A novel two-stage, transdisciplinary study identifies digoxin as a possible drug for prostate cancer treatment. , 2011, Cancer discovery.

[5]  Zhimin Wang,et al.  Bufadienolides and their antitumor activity. , 2011, Natural product reports.

[6]  Cheng Jiang,et al.  Bufadienolide compounds sensitize human breast cancer cells to TRAIL-induced apoptosis via inhibition of STAT3/Mcl-1 pathway , 2011, Apoptosis.

[7]  A. Jemal,et al.  Global Cancer Statistics , 2011 .

[8]  C. Pirker,et al.  Targeting of eEF1A with Amaryllidaceae isocarbostyrils as a strategy to combat melanomas , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[9]  A. Leitner,et al.  Comparison of toad venoms from different Bufo species by HPLC and LC-DAD-MS/MS. , 2010, Journal of ethnopharmacology.

[10]  B. Cavalcanti,et al.  Cytotoxic profile of natural and some modified bufadienolides from toad Rhinella schneideri parotoid gland secretion. , 2010, Toxicon : official journal of the International Society on Toxinology.

[11]  Elizabeta Bab-Dinitz,et al.  Selectivity of Digitalis Glycosides for Isoforms of Human Na,K-ATPase* , 2010, The Journal of Biological Chemistry.

[12]  R. Kiss,et al.  Rapid structural identification of cytotoxic bufadienolide sulfates in toad venom from Bufo melanosticus by LC-DAD-MS(n) and LC-SPE-NMR. , 2010, Journal of natural products.

[13]  R. Newman,et al.  Human tumor cell sensitivity to oleandrin is dependent on relative expression of Na+, K+ -ATPase subunitst. , 2010, Journal of experimental therapeutics & oncology.

[14]  W. Berger,et al.  The Na+/K+-ATPase is the Achilles heel of multi-drug-resistant cancer cells. , 2009, Cancer letters.

[15]  J. Wrana,et al.  Inhibition of the sodium potassium adenosine triphosphatase pump sensitizes cancer cells to anoikis and prevents distant tumor formation. , 2009, Cancer research.

[16]  Milind B. Suraokar,et al.  Oleandrin-mediated inhibition of human tumor cell proliferation: Importance of Na,K-ATPase α subunits as drug targets , 2008, Molecular Cancer Therapeutics.

[17]  R. Kiss,et al.  Na+/K+-ATPase α subunits as new targets in anticancer therapy , 2008 .

[18]  Y. Pei,et al.  One new bufadienolide from Chinese drug “Chan'Su” , 2008 .

[19]  R. Kiss,et al.  TARGETING THE α 1 SUBUNIT OF THE SODIUM PUMP TO COMBAT GLIOBLASTOMA CELLS , 2008, Neurosurgery.

[20]  Xiao-chi Ma,et al.  Microbial transformation of three bufadienolides by Penicillium aurantigriseum and its application for metabolite identification in rat , 2007 .

[21]  R. Kiss,et al.  Cardiotonic steroids on the road to anti-cancer therapy. , 2007, Biochimica et biophysica acta.

[22]  C. Ling,et al.  Anti-tumor activities and apoptosis-regulated mechanisms of bufalin on the orthotopic transplantation tumor model of human hepatocellular carcinoma in nude mice. , 2007, World journal of gastroenterology.

[23]  R. Kiss,et al.  The α1 subunit of the sodium pump could represent a novel target to combat non‐small cell lung cancers , 2007 .

[24]  Lijun Liu,et al.  Identification of a Pool of Non-pumping Na/K-ATPase* , 2007, Journal of Biological Chemistry.

[25]  M. Ye,et al.  Simultaneous determination of cytotoxic bufadienolides in the Chinese medicine ChanSu by high-performance liquid chromatography coupled with photodiode array and mass spectrometry detections. , 2006, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[26]  A. Andres,et al.  Cardiac glycosides initiate Apo2L/TRAIL-induced apoptosis in non-small cell lung cancer cells by up-regulation of death receptors 4 and 5. , 2006, Cancer research.

[27]  R. Kiss,et al.  Cardenolide-induced lysosomal membrane permeabilization demonstrates therapeutic benefits in experimental human non-small cell lung cancers. , 2006, Neoplasia.

[28]  M. Ye,et al.  Novel cytotoxic bufadienolides derived from bufalin by microbial hydroxylation and their structure–activity relationships , 2004, The Journal of Steroid Biochemistry and Molecular Biology.

[29]  H. Morita,et al.  QSAR evaluation of the Ch'an Su and related bufadienolides against the colchicine-resistant primary liver carcinoma cell line PLC/PRF/5(1). , 2002, Journal of medicinal chemistry.

[30]  G. Opelz,et al.  The T-cell suppressive effect of bufadienolides: structural requirements for their immunoregulatory activity. , 2001, International immunopharmacology.

[31]  L. Quadri,et al.  17beta-O-Aminoalkyloximes of 5beta-androstane-3beta,14beta-diol with digitalis-like activity: synthesis, cardiotonic activity, structure-activity relationships, and molecular modeling of the Na(+),K(+)-ATPase receptor. , 2000, Journal of medicinal chemistry.

[32]  M. Inoue,et al.  Structure-cytotoxic activity relationship for the toad poison bufadienolides. , 1998, Bioorganic & medicinal chemistry.

[33]  H. Morita,et al.  CONFORMATIONAL PREFERENCE OF TWO TOAD POISON BUFADIENOLIDES, BUFARENOGIN AND PSI -BUFARENOGIN , 1998 .

[34]  R. Kiss,et al.  In vitro characterization of prolactin‐induced effects on proliferation in the neoplastic LNCaP, DU145, and PC3 models of the human prostate , 1996, Cancer.

[35]  M. Schubert-Zsilavecz,et al.  The structure of hellebrin , 1995 .

[36]  W. Robien,et al.  About the bufadienolide complex of "red" squill. , 1994, Planta medica.

[37]  W. Robien,et al.  Bufadienolides from Urginea maritima sensu strictu. , 1991, Planta medica.

[38]  L. Krenn,et al.  Bufadienolide aus Urginea hesperia , 1988, Planta medica.

[39]  Abe. J. Goldin,et al.  DIGITALIS AND CANCER , 1984, The Lancet.

[40]  E. Bengtsson,et al.  Cardiac glycosides and breast cancer, revisited. , 1982, The New England journal of medicine.

[41]  H. Linde,et al.  Partialsynthese von Bufarenogin und Argentinogenin. Über Bufadienolide, 42. Mitteilung†‡ , 1973 .

[42]  H. Linde,et al.  Ein neues Bufadienolid aus Helleborus odorus Waldtst. et Kit.. Über Krötengifte, 40. Mitteilung , 1972 .

[43]  K. Meyer,et al.  [255. Additional bufadienolides from Ch'an Su. Toad venoms. 39]. , 1972, Helvetica chimica acta.

[44]  K. Meyer,et al.  Collection of Toad Venoms and Chemistry of the Toad Venom Steroids , 1971 .

[45]  C. Tamm,et al.  Magnetische Protonenresonanz‐Spektroskopie der Bufadienolide (steroidartigen Krötengifte) , 1969 .

[46]  Y. Kamano,et al.  The isolation and structure of new bufadienolide, resibufagin and the isolation of marinobufagin. , 1968, Tetrahedron letters.

[47]  H. Linde,et al.  ψ-Bufarenogin, ein neues Bufadienolid aus Ch'an Su und Umlagerungsprodukt des Arenobufagins sowie Bemerkung zur Konfiguration des Bufarenogins. Über Krötengifte 32. Mitteilung† , 1967 .

[48]  H. Linde,et al.  Konstitution des Cinobufotalins. Über Krötengifte, 28. Mitteilung , 1962 .

[49]  P. Hofer,et al.  Konstitution des Arenobufagins. Über Krötengifte, 23. Mitteilung , 1960 .

[50]  H. Linde,et al.  Konstitution des Resibufogenins Über Krötengifte, 17. Mitteilung , 1959 .

[51]  A. Lardon,et al.  [Partial synthesis of cortisone and related compounds from sarmentogenin; adrenal cortical compounds and related drugs. LXXXV]. , 1952, Pharmaceutica acta Helvetiae.