Completeness-via-canonicity in coalgebraic logics

This thesis aims to provide a suite of techniques to generate completeness results for coalgebraic logics with axioms of arbitrary rank. We have chosen to investigate the possibility to generalize what is arguably one of the most successful methods to prove completeness results in `classical' modal logic, namely completeness-via-canonicity. This technique is particularly well-suited to a coalgebraic generalization because of its clean and abstract algebraic formalism.

[1]  Alexander Kurz,et al.  Positive Fragments of Coalgebraic Logics , 2013, CALCO.

[2]  I. Moerdijk,et al.  Sheaves in geometry and logic: a first introduction to topos theory , 1992 .

[3]  Henrik Sahlqvist Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .

[4]  Robert Goldblatt,et al.  Varieties of Complex Algebras , 1989, Ann. Pure Appl. Log..

[5]  David J. Pym,et al.  Completeness via Canonicity for Distributive Substructural Logics: A Coalgebraic Perspective , 2015, RAMiCS.

[6]  F. Borceux Handbook Of Categorical Algebra 1 Basic Category Theory , 2008 .

[7]  Yde Venema,et al.  A Sahlqvist theorem for distributive modal logic , 2005, Ann. Pure Appl. Log..

[8]  Alexander Kurz,et al.  Algebraic Semantics for Coalgebraic Logics , 2004, CMCS.

[9]  Guram Bezhanishvili,et al.  Locally finite varieties , 2001 .

[10]  Mai Gehrke,et al.  Relational semantics for a fragment of linear logic , 2012 .

[11]  Alexander Kurz,et al.  Expressiveness of Positive Coalgebraic Logic , 2012, Advances in Modal Logic.

[12]  Yde Venema,et al.  Completeness for the coalgebraic cover modality , 2012, Log. Methods Comput. Sci..

[13]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[14]  PROBLEMS IN FOLIATIONS AND LAMINATIONS OF3-MANIFOLDS , 2002, math/0209081.

[15]  Bruno Teheux Algebraic approach to modal extensions of Łukasiewicz logics , 2009 .

[16]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[17]  Jirí Adámek,et al.  On Finitary Functors and Their Presentations , 2012, CMCS.

[18]  Alexander Kurz,et al.  Modalities in the Stone age: A comparison of coalgebraic logics , 2012, Theor. Comput. Sci..

[19]  Stefan Milius,et al.  Terminal coalgebras and free iterative theories , 2006, Inf. Comput..

[20]  Melvin Fitting,et al.  Tableau methods of proof for modal logics , 1972, Notre Dame J. Formal Log..

[21]  Jesse Hughes,et al.  A study of categories of algebras and coalgebras , 2001 .

[22]  J. Vosmaer,et al.  Logic, algebra and topology: investigations into canonical extensions, duality theory and point-free topology , 2010 .

[23]  M. Gehrke,et al.  Bounded Lattice Expansions , 2001 .

[24]  Dirk Pattinson,et al.  PSPACE Bounds for Rank-1 Modal Logics , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[25]  Maurizio Fattorosi-Barnaba,et al.  Graded modalities. I , 1985, Stud Logica.

[26]  Yde Venema,et al.  Algebras and coalgebras , 2007, Handbook of Modal Logic.

[27]  Felix Hueber,et al.  Locally Presentable And Accessible Categories , 2016 .

[28]  Gary M. Hardegree,et al.  Algebraic Methods in Philosophical Logic , 2001 .

[29]  Philippa Gardner,et al.  Context logic as modal logic: completeness and parametric inexpressivity , 2007, POPL '07.

[30]  Steven Givant,et al.  Introduction to Boolean Algebras , 2008 .

[31]  R. P. Dilworth,et al.  Residuated Lattices. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Ana Sokolova,et al.  Exemplaric Expressivity of Modal Logics , 2010, J. Log. Comput..

[33]  Lutz Schröder,et al.  A finite model construction for coalgebraic modal logic , 2006, J. Log. Algebraic Methods Program..

[34]  H. Priestley,et al.  Distributive Lattices , 2004 .

[35]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[36]  G. M. Kelly,et al.  A $2$-categorical approach to change of base and geometric morphisms I , 1991 .

[37]  H. Ribeiro,et al.  A Remark on Boolean Algebras with Operators , 1952 .

[38]  J. Bell STONE SPACES (Cambridge Studies in Advanced Mathematics 3) , 1987 .

[39]  R. Goldblatt Topoi, the Categorial Analysis of Logic , 1979 .

[40]  Alexander Kurz,et al.  Equational presentations of functors and monads , 2011, Mathematical Structures in Computer Science.

[41]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[42]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.

[43]  Till Plewe,et al.  Quotient Maps of Locales , 2000, Appl. Categorical Struct..

[44]  M. de Rijke,et al.  Sahlqvist's theorem for boolean algebras with operators with an application to cylindric algebras , 1995, Stud Logica.

[45]  H. Ono,et al.  Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Volume 151 , 2007 .

[46]  Peter Jipsen,et al.  Residuated lattices: An algebraic glimpse at sub-structural logics , 2007 .

[47]  H. Ono Substructural Logics and Residuated Lattices — an Introduction , 2003 .

[48]  Dirk Pattinson,et al.  Coalgebraic semantics of modal logics: An overview , 2011, Theor. Comput. Sci..

[49]  J. Rutter Spaces of Homotopy Self-Equivalences - A Survey , 1997 .

[50]  Bjarni Jónsson,et al.  On the canonicity of Sahlqvist identities , 1994, Stud Logica.

[51]  A. Tarski,et al.  Boolean Algebras with Operators. Part I , 1951 .

[52]  Alexander Kurz,et al.  Strongly Complete Logics for Coalgebras , 2012, Log. Methods Comput. Sci..

[53]  J. R. Buzeman Introduction To Boolean Algebras , 1961 .

[54]  G. M. Kelly,et al.  Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads , 1993 .

[55]  Leon Henkin,et al.  Extending Boolean operations. , 1970 .

[56]  J. Rosický,et al.  Completeness of cocompletions , 2005 .

[57]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[58]  Fenrong Liu,et al.  Games at the Institute for Logic, Language and Computation , 2005 .

[59]  Dirk Pattinson,et al.  Beyond Rank 1: Algebraic Semantics and Finite Models for Coalgebraic Logics , 2008, FoSSaCS.

[60]  R. Goldblatt Elementary generation and canonicity for varieties of Boolean algebras with operators , 1995 .

[61]  Dirk Pattinson,et al.  Coalgebraic modal logic: soundness, completeness and decidability of local consequence , 2003, Theor. Comput. Sci..

[62]  S. Lane,et al.  Sheaves In Geometry And Logic , 1992 .

[63]  Lorijn van Rooijen,et al.  Relational semantics for full linear logic , 2014, J. Appl. Log..

[64]  Dirk Pattinson,et al.  Strong Completeness of Coalgebraic Modal Logics , 2009, STACS.

[65]  Alexander Kurz,et al.  Ultrafilter Extensions for Coalgebras , 2005, CALCO.

[66]  David Pincus,et al.  Review: J. D. Halpern, H. Lauchli, A Partition Theorem; J. D. Halpern, A. Levy, The Boolean Prime Ideal Theorem Does Not Imply the Axiom of Choice , 1974, Journal of Symbolic Logic.

[67]  Alessandra Palmigiano,et al.  Δ1-completions of a Poset , 2013, Order.

[68]  Philip J. Scott,et al.  Review: Robert Goldblatt, Topoi. The Categorical Analysis of Logic , 1982 .

[69]  Tomoyuki Suzuki,et al.  CANONICITY RESULTS OF SUBSTRUCTURAL AND LATTICE-BASED LOGICS , 2010, The Review of Symbolic Logic.

[70]  J. Michael Dunn,et al.  Positive modal logic , 1995, Stud Logica.

[71]  Alexander Kurz,et al.  The Goldblatt-Thomason Theorem for Coalgebras , 2007, CALCO.

[72]  Alessandra Palmigiano,et al.  Canonical extensions and relational completeness of some substructural logics* , 2005, Journal of Symbolic Logic.

[73]  Fredrik Dahlqvist,et al.  Some Sahlqvist Completeness Results for Coalgebraic Logics , 2013, FoSSaCS.

[74]  Věra Trnková,et al.  Some properties of set functors , 1969 .

[75]  Jirí Adámek,et al.  Algebraic Theories: A Categorical Introduction to General Algebra , 2010 .

[76]  Marcello M. Bonsangue,et al.  Presenting Functors by Operations and Equations , 2006, FoSSaCS.

[77]  Alexander Kurz,et al.  Presenting functors on many-sorted varieties and applications , 2010, Inf. Comput..

[78]  Intersection of finitely generated subgroups , 1968 .

[79]  G. M. Kelly A note on relations relative to a factorization system , 1991 .

[80]  Samson Abramsky Coalgebras, Chu Spaces, and Representations of Physical Systems , 2010, LICS.

[81]  H. Peter Gumm From T-Coalgebras to Filter Structures and Transition Systems , 2005, CALCO.

[82]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[83]  Mai Gehrke,et al.  Generalized Kripke Frames , 2006, Stud Logica.

[84]  P. Freyd Several new concepts: Lucid and concordant functors, pre-limits, pre-completeness, the continuous and concordant completions of categories , 1969 .

[85]  Michael Makkai,et al.  Accessible categories: The foundations of categorical model theory, , 2007 .

[86]  Jirí Adámek,et al.  Presentation of Set Functors: A Coalgebraic Perspective , 2010, J. Log. Comput..

[87]  Mai Gehrke,et al.  Bounded distributive lattice expansions , 2004 .

[88]  Yde Venema,et al.  The preservation of Sahlqvist equations in completions of Boolean algebras with operators , 1999 .

[89]  Kit Fine,et al.  In so many possible worlds , 1972, Notre Dame J. Formal Log..