Mechanism of giant Goos–Hänchen effect enhanced by long-range surface plasmon excitation

The giant Goos–Hanchen shift on a long-range surface plasmon (LRSP) configuration is examined theoretically. This lateral shift at the resonance of the LRSP can be two orders of magnitude greater than a wavelength. The analytical formulas of the radiative damping and the intrinsic damping of the LRSP are derived. It is found that the thicknesses of the second medium and the metal film determine the radiative damping and the intrinsic damping is illuminated by the imaginary part of the dielectric constant of the metal. Negative lateral beam shift occurs when the intrinsic damping is larger than the radiative damping. The theoretical results show good agreement with the predictions of the formulas.

[1]  F. Goos,et al.  Ein neuer und fundamentaler Versuch zur Totalreflexion , 1947 .

[2]  Theodor Tamir,et al.  Lateral Displacement of Optical Beams at Multilayered and Periodic Structures , 1971 .

[3]  K. Artmann Berechnung der Seitenversetzung des totalreflektierten Strahles , 1948 .

[4]  Thomas Søndergaard,et al.  General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. , 2007, Optics express.

[5]  J. C. Quail,et al.  Long-range surface-plasmon modes in silver and aluminum films. , 1983, Optics letters.

[6]  F. Goos,et al.  Neumessung des Strahlversetzungseffektes bei Totalreflexion , 1949 .

[7]  Chun-Fang Li,et al.  Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects. , 2003, Physical review letters.

[8]  Honggen Li,et al.  Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides. , 2007, Optics letters.

[9]  Shun Lien Chuang,et al.  Lateral shift of an optical beam due to leaky surface-plasmon excitations , 1986 .

[10]  Xi Chen,et al.  Negative and positive lateral shifts: a result of beam reshaping caused by interference , 2009 .

[11]  E. Economou Surface Plasmons in Thin Films , 1969 .

[12]  Yan Peng,et al.  Theoretical and experimental study of opposite lateral shifts and polarization beam splitting on symmetrical metal-cladding waveguides , 2010 .

[13]  Zhuangqi Cao,et al.  Wavelength Sensing With Subpicometer Resolution Using Ultrahigh Order Modes , 2007, Journal of Lightwave Technology.

[14]  Pengfei Zhu,et al.  Large positive and negative lateral optical beam shift in prism-waveguide coupling system. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Nicholas X. Fang,et al.  Large positive and negative lateral optical beam displacements due to surface plasmon resonance , 2004 .

[16]  H. Lai,et al.  Large and negative Goos-Hänchen shift near the Brewster dip on reflection from weakly absorbing media. , 2002, Optics letters.

[17]  Shi-Yao Zhu,et al.  Large negative Goos-Hänchen shift from a weakly absorbing dielectric slab. , 2005, Optics letters.

[18]  T Okamoto,et al.  Optical waveguide absorption sensor using a single coupling prism. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[19]  Physical origin of large positive and negative lateral optical beam shifts in prism–waveguide coupling system , 2010 .