Electric Field-Driven Shifting and Expansion of Photonic Band Gaps in 3D Liquid Photonic Crystals

Highly tunable 3D liquid photonic crystals are demonstrated using low-dc-field-driven polymer-stabilized blue-phase liquid crystals. The central wavelength of the photonic band gap can be reversibly shifted to more than 200 nm away from the original position. Besides, by controlling the polymerization-induced morphology variations, the band gap can also be expanded from a bandwidth of around 30 nm to at least 310 nm, the first time a “white” blue phase is observed. Both types of band-gap modulation, namely, shifting and expansion, can be independently manipulated in any crystal axis without affecting the lattice spacings in the other dimensions. We envision polymer-stabilized blue-phase liquid crystals as a fascinating platform for photonic applications, such as 3D lasers, nonlinear optics, and photonic integrated circuits.

[1]  R. S. Zola,et al.  Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies. , 2015, Soft matter.

[2]  Tsung-Hsien Lin,et al.  Self-Organized 3D Photonic Superstructure: Blue Phase Liquid Crystal , 2015 .

[3]  Y. Hsiao,et al.  Influence of methyl red as a dopant on the electrical properties and device performance of liquid crystals. , 2014, Optics express.

[4]  K. M. Lee,et al.  Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals , 2014 .

[5]  Christopher Bailey,et al.  Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals , 2014 .

[6]  M. Ozaki,et al.  Secondary electro-optic effect in liquid crystalline cholesteric blue phases , 2014 .

[7]  Min Gu,et al.  Miniature chiral beamsplitter based on gyroid photonic crystals , 2013, Nature Photonics.

[8]  Hung-Chang Jau,et al.  Red, Green and Blue Reflections Enabled in an Optically Tunable Self‐Organized 3D Cubic Nanostructured Thin Film , 2013, Advanced materials.

[9]  M. Song,et al.  Liquid‐Crystalline Blue Phase Laser with Widely Tunable Wavelength , 2013, Advanced materials.

[10]  M. Ozaki,et al.  Electro-Optics of Cubic and Tetragonal Blue Phase Liquid Crystals Investigated by Two-Beam Interference Microscopy , 2013 .

[11]  Lalgudi V. Natarajan,et al.  Electrically Induced Color Changes in Polymer‐Stabilized Cholesteric Liquid Crystals , 2013 .

[12]  Iam-Choon Khoo,et al.  Temperature dependence of refractive index in blue phase liquid crystals , 2013 .

[13]  Shin-Tson Wu,et al.  Electric field-induced monodomain blue phase liquid crystals , 2013 .

[14]  S. S. Choi,et al.  Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications. , 2012, Nature materials.

[15]  M. Ozaki,et al.  Polarization-independent refractive index tuning using gold nanoparticle-stabilized blue phase liquid crystals. , 2011, Optics letters.

[16]  Tsung-Hsien Lin,et al.  Pinning effect on the photonic bandgaps of blue-phase liquid crystal. , 2011, Applied optics.

[17]  D. Marenduzzo,et al.  Switching dynamics in cholesteric blue phases , 2011, 1103.6005.

[18]  Miha Ravnik,et al.  Three-dimensional colloidal crystals in liquid crystalline blue phases , 2011, Proceedings of the National Academy of Sciences.

[19]  S. Iwamoto,et al.  Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap , 2010, 1006.1680.

[20]  Kurt Busch,et al.  Three‐Dimensional Nanostructures for Photonics , 2010 .

[21]  L. Chien,et al.  Electrically switched color with polymer-stabilized blue-phase liquid crystals. , 2010, Optics letters.

[22]  Tsung-Hsien Lin,et al.  Bistable effect in the liquid crystal blue phase , 2010 .

[23]  Hiroyuki Yoshida,et al.  Nanoparticle-Stabilized Cholesteric Blue Phases , 2009 .

[24]  Paul V. Braun,et al.  Embedded cavities and waveguides in three-dimensional silicon photonic crystals , 2008 .

[25]  Shiyoshi Yokoyama,et al.  Laser Emission from a Polymer‐Stabilized Liquid‐Crystalline Blue Phase , 2006 .

[26]  Harry J. Coles,et al.  Liquid crystal ‘blue phases’ with a wide temperature range , 2005, Nature.

[27]  Masayuki Yokota,et al.  Polymer-stabilized liquid crystal blue phases , 2002, Nature materials.

[28]  Helen F. Gleeson,et al.  Lattice Parameter Measurements from the Kossel Diagrams of the Cubic Liquid Crystal Blue Phases , 1996 .

[29]  Heinz-S. Kitzerow,et al.  The effect of electric fields on blue phases , 1991 .

[30]  H. Kitzerow,et al.  Electrostriction of the cholesteric blue phases BPI and BPII in mixtures with positive dielectric anisotropy , 1989 .

[31]  Gerd Heppke,et al.  Electrostriction of BPI and BPII for blue phase systems with negative dielectric anisotropy , 1989 .

[32]  P. Pieranski,et al.  Determination of the blue phase II structure , 1988 .

[33]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[34]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[35]  Pieranski,et al.  Field-induced tetragonal blue phase (BP X). , 1987, Physical review. A, General physics.

[36]  Pieranski,et al.  Kossel diagrams show electric-field-induced cubic-tetragonal structural transition in frustrated liquid-crystal blue phases. , 1986, Physical review letters.

[37]  James P. Sethna,et al.  Theory of the blue phase of cholesteric liquid crystals. , 1981 .

[38]  Pawel Pieranski,et al.  Geometry of Kossel lines in colloidal crystals , 1981 .