Cubature formulae for nearly singular and highly oscillating integrals

The paper deals with the approximation of integrals of the type $$\begin{aligned} I(f;{\mathbf {t}})=\int _{{\mathrm {D}}} f({\mathbf {x}}) {\mathbf {K}}({\mathbf {x}},{\mathbf {t}}) {\mathbf {w}}({\mathbf {x}}) d{\mathbf {x}},\quad \quad {\mathbf {x}}=(x_1,x_2),\quad {\mathbf {t}}\in \mathrm {T}\subseteq \mathbb {R}^p, \ p\in \{1,2\} \end{aligned}$$I(f;t)=∫Df(x)K(x,t)w(x)dx,x=(x1,x2),t∈T⊆Rp,p∈{1,2}where $${\mathrm {D}}=[-\,1,1]^2$$D=[-1,1]2, f is a function defined on $${\mathrm {D}}$$D with possible algebraic singularities on $$\partial {\mathrm {D}}$$∂D, $${\mathbf {w}}$$w is the product of two Jacobi weight functions, and the kernel $${\mathbf {K}}$$K can be of different kinds. We propose two cubature rules determining conditions under which the rules are stable and convergent. Along the paper we diffusely treat the numerical approximation for kernels which can be nearly singular and/or highly oscillating, by using a bivariate dilation technique. Some numerical examples which confirm the theoretical estimates are also proposed.

[1]  Barbara M. Johnston,et al.  A sinh transformation for evaluating two‐dimensional nearly singular boundary element integrals , 2007 .

[2]  Pietro Pastore,et al.  The numerical treatment of Love's integral equation having very small parameter , 2011, J. Comput. Appl. Math..

[3]  S. Lewanowicz A fast algorithm for the construction of recurrence relations for modified moments , 1994 .

[4]  A. Bultheel,et al.  Modified Moments and Orthogonal Rational Functions , 2004 .

[5]  Giovanni Monegato,et al.  A polynomial collocation method for the numerical solution of weakly singular and singular integral equations on non‐smooth boundaries , 2003 .

[6]  Maria Grazia Russo,et al.  Numerical methods for Fredholm integral equations on the square , 2011, Appl. Math. Comput..

[7]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[8]  W. Gautschi On the construction of Gaussian quadrature rules from modified moments. , 1970 .

[10]  Gradimir V. Milovanovic,et al.  Nyström method for Fredholm integral equations of the second kind in two variables on a triangle , 2013, Appl. Math. Comput..

[11]  H. Rogier,et al.  Accurate 2.5‐D boundary element method for conductive media , 2014 .

[12]  G. Milovanović,et al.  Interpolation Processes: Basic Theory and Applications , 2008 .

[13]  Ian H. Sloan,et al.  Polynomial interpolation and hyperinterpolation over general regions , 1995 .

[14]  Alvise Sommariva,et al.  Algebraic cubature by linear blending of elliptical arcs , 2013 .

[15]  Daan Huybrechs,et al.  The Construction of cubature rules for multivariate highly oscillatory integrals , 2007, Math. Comput..

[16]  Alvise Sommariva,et al.  Padua2DM: fast interpolation and cubature at the Padua points in Matlab/Octave , 2010, Numerical Algorithms.

[17]  Paul Nevai,et al.  Mean convergence of Lagrange interpolation. III , 1984 .

[18]  Yuan Xu,et al.  On Gauss-Lobatto Integration on the Triangle , 2010, SIAM J. Numer. Anal..

[19]  Robert Piessens,et al.  Modified Clenshaw-Curtis Integration and Applications to Numerical Computation of Integral Transforms , 1987 .