All Real Eigenvalues of Symmetric Tensors

This paper studies how to compute all real eigenvalues, associated to real eigenvectors, of a symmetric tensor. As is well known, the largest or smallest eigenvalue can be found by solving a polynomial optimization problem, while the other middle ones cannot. We propose a new approach for computing all real eigenvalues sequentially, from the largest to the smallest. It uses Jacobian semidefinite relaxations in polynomial optimization. We show that each eigenvalue can be computed by solving a finite hierarchy of semidefinite relaxations. Numerical experiments are presented to show how to do this.

[1]  Kung-Ching Chang,et al.  Perron-Frobenius theorem for nonnegative tensors , 2008 .

[2]  Zheng-Hai Huang,et al.  Finding the extreme Z‐eigenvalues of tensors via a sequential semidefinite programming method , 2013, Numer. Linear Algebra Appl..

[3]  A. Ivic Sums of squares , 2020, An Introduction to 𝑞-analysis.

[4]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[5]  Yu-Hong Dai,et al.  A sequential subspace projection method for extreme Z-eigenvalues of supersymmetric tensors , 2015, Numer. Linear Algebra Appl..

[6]  Didier Henrion,et al.  GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..

[7]  Jinshan Xie,et al.  On the Z‐eigenvalues of the signless Laplacian tensor for an even uniform hypergraph , 2013, Numer. Linear Algebra Appl..

[8]  Kok Lay Teo,et al.  Multivariate Polynomial Minimization and Its Application in Signal Processing , 2003, J. Glob. Optim..

[9]  Lixing Han An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors , 2012, 1203.5150.

[10]  Guoyin Li,et al.  The Z‐eigenvalues of a symmetric tensor and its application to spectral hypergraph theory , 2013, Numer. Linear Algebra Appl..

[11]  Donal O'Shea,et al.  Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.

[12]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[13]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[14]  Jiawang Nie,et al.  The hierarchy of local minimums in polynomial optimization , 2013, Mathematical Programming.

[15]  L. Qi,et al.  Numerical multilinear algebra and its applications , 2007 .

[16]  Raul E. Curto,et al.  Truncated K-moment problems in several variables , 2005 .

[17]  Wenyu Sun,et al.  Positive Semidefinite Generalized Diffusion Tensor Imaging via Quadratic Semidefinite Programming , 2013, SIAM J. Imaging Sci..

[18]  M. Wodzicki Lecture Notes in Math , 1984 .

[19]  Fei Wang,et al.  Z-eigenvalue methods for a global polynomial optimization problem , 2009, Math. Program..

[20]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[21]  Olga Taussky-Todd SOME CONCRETE ASPECTS OF HILBERT'S 17TH PROBLEM , 1996 .

[22]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[23]  L. Qi,et al.  Higher Order Positive Semidefinite Diffusion Tensor Imaging , 2010, SIAM J. Imaging Sci..

[24]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[25]  Lek-Heng Lim Tensors and Hypermatrices , 2013 .

[26]  Li Wang,et al.  Semidefinite Relaxations for Best Rank-1 Tensor Approximations , 2013, SIAM J. Matrix Anal. Appl..

[27]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[28]  Tamara G. Kolda,et al.  Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..

[29]  Jiawang Nie,et al.  Certifying convergence of Lasserre’s hierarchy via flat truncation , 2011, Math. Program..

[30]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[31]  Jiawang Nie,et al.  An exact Jacobian SDP relaxation for polynomial optimization , 2010, Math. Program..

[32]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[33]  Chen Ling,et al.  The Best Rank-1 Approximation of a Symmetric Tensor and Related Spherical Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..

[34]  L. Qi,et al.  The degree of the E-characteristic polynomial of an even order tensor , 2007 .

[35]  Fei Wang,et al.  An Eigenvalue Method for Testing Positive Definiteness of a Multivariate Form , 2008, IEEE Transactions on Automatic Control.

[36]  Liqun Qi,et al.  D-eigenvalues of diffusion kurtosis tensors , 2008 .

[37]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[38]  J. Lasserre,et al.  Detecting global optimality and extracting solutions in GloptiPoly , 2003 .

[39]  B. Sturmfels,et al.  The number of eigenvalues of a tensor , 2010, 1004.4953.