All Real Eigenvalues of Symmetric Tensors
暂无分享,去创建一个
[1] Kung-Ching Chang,et al. Perron-Frobenius theorem for nonnegative tensors , 2008 .
[2] Zheng-Hai Huang,et al. Finding the extreme Z‐eigenvalues of tensors via a sequential semidefinite programming method , 2013, Numer. Linear Algebra Appl..
[3] A. Ivic. Sums of squares , 2020, An Introduction to 𝑞-analysis.
[4] J. Lasserre. Moments, Positive Polynomials And Their Applications , 2009 .
[5] Yu-Hong Dai,et al. A sequential subspace projection method for extreme Z-eigenvalues of supersymmetric tensors , 2015, Numer. Linear Algebra Appl..
[6] Didier Henrion,et al. GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..
[7] Jinshan Xie,et al. On the Z‐eigenvalues of the signless Laplacian tensor for an even uniform hypergraph , 2013, Numer. Linear Algebra Appl..
[8] Kok Lay Teo,et al. Multivariate Polynomial Minimization and Its Application in Signal Processing , 2003, J. Glob. Optim..
[9] Lixing Han. An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors , 2012, 1203.5150.
[10] Guoyin Li,et al. The Z‐eigenvalues of a symmetric tensor and its application to spectral hypergraph theory , 2013, Numer. Linear Algebra Appl..
[11] Donal O'Shea,et al. Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.
[12] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[13] Christopher J. Hillar,et al. Most Tensor Problems Are NP-Hard , 2009, JACM.
[14] Jiawang Nie,et al. The hierarchy of local minimums in polynomial optimization , 2013, Mathematical Programming.
[15] L. Qi,et al. Numerical multilinear algebra and its applications , 2007 .
[16] Raul E. Curto,et al. Truncated K-moment problems in several variables , 2005 .
[17] Wenyu Sun,et al. Positive Semidefinite Generalized Diffusion Tensor Imaging via Quadratic Semidefinite Programming , 2013, SIAM J. Imaging Sci..
[18] M. Wodzicki. Lecture Notes in Math , 1984 .
[19] Fei Wang,et al. Z-eigenvalue methods for a global polynomial optimization problem , 2009, Math. Program..
[20] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[21] Olga Taussky-Todd. SOME CONCRETE ASPECTS OF HILBERT'S 17TH PROBLEM , 1996 .
[22] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[23] L. Qi,et al. Higher Order Positive Semidefinite Diffusion Tensor Imaging , 2010, SIAM J. Imaging Sci..
[24] Lek-Heng Lim,et al. Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..
[25] Lek-Heng Lim. Tensors and Hypermatrices , 2013 .
[26] Li Wang,et al. Semidefinite Relaxations for Best Rank-1 Tensor Approximations , 2013, SIAM J. Matrix Anal. Appl..
[27] M. Laurent. Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .
[28] Tamara G. Kolda,et al. Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..
[29] Jiawang Nie,et al. Certifying convergence of Lasserre’s hierarchy via flat truncation , 2011, Math. Program..
[30] R. Saigal,et al. Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .
[31] Jiawang Nie,et al. An exact Jacobian SDP relaxation for polynomial optimization , 2010, Math. Program..
[32] Jean B. Lasserre,et al. Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..
[33] Chen Ling,et al. The Best Rank-1 Approximation of a Symmetric Tensor and Related Spherical Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..
[34] L. Qi,et al. The degree of the E-characteristic polynomial of an even order tensor , 2007 .
[35] Fei Wang,et al. An Eigenvalue Method for Testing Positive Definiteness of a Multivariate Form , 2008, IEEE Transactions on Automatic Control.
[36] Liqun Qi,et al. D-eigenvalues of diffusion kurtosis tensors , 2008 .
[37] Liqun Qi,et al. Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..
[38] J. Lasserre,et al. Detecting global optimality and extracting solutions in GloptiPoly , 2003 .
[39] B. Sturmfels,et al. The number of eigenvalues of a tensor , 2010, 1004.4953.