The process of mRNA–tRNA translocation

In the elongation cycle of translation, translocation is the process that advances the mRNA–tRNA moiety on the ribosome, to allow the next codon to move into the decoding center. New results obtained by cryoelectron microscopy, interpreted in the light of x-ray structures and kinetic data, allow us to develop a model of the molecular events during translocation.

[1]  Harry F. Noller,et al.  Crystal Structure of a 70S Ribosome-tRNA Complex Reveals Functional Interactions and Rearrangements , 2014, Cell.

[2]  Harry F Noller,et al.  Elongation factor G stabilizes the hybrid-state conformation of the 70S ribosome. , 2007, RNA.

[3]  M. Selmer,et al.  Crystal structure of the ribosome recycling factor bound to the ribosome , 2007, Nature Structural &Molecular Biology.

[4]  J. Holton,et al.  Structural basis for aminoglycoside inhibition of bacterial ribosome recycling , 2007, Nature Structural &Molecular Biology.

[5]  Zigurts K. Majumdar,et al.  Observation of intersubunit movement of the ribosome in solution using FRET. , 2007, Journal of molecular biology.

[6]  J. Frank,et al.  RF3 Induces Ribosomal Conformational Changes Responsible for Dissociation of Class I Release Factors , 2007, Cell.

[7]  Roxana Nechifor,et al.  Crosslinking of translation factor EF-G to proteins of the bacterial ribosome before and after translocation. , 2007, Journal of molecular biology.

[8]  Joachim Frank,et al.  Structures of modified eEF2·80S ribosome complexes reveal the role of GTP hydrolysis in translocation , 2007, The EMBO journal.

[9]  Harry F Noller,et al.  Intersubunit movement is required for ribosomal translocation , 2007, Proceedings of the National Academy of Sciences.

[10]  Daniel N. Wilson,et al.  Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. , 2007, Molecular cell.

[11]  Nathan O'Connor,et al.  Identification of two distinct hybrid state intermediates on the ribosome. , 2007, Molecular cell.

[12]  B. Cooperman,et al.  Kinetically competent intermediates in the translocation step of protein synthesis. , 2007, Molecular cell.

[13]  Bernard Rees,et al.  Structural basis for messenger RNA movement on the ribosome , 2006, Nature.

[14]  S. Joseph,et al.  The A-site Finger in 23 S rRNA Acts as a Functional Attenuator for Translocation* , 2006, Journal of Biological Chemistry.

[15]  M. Selmer,et al.  Structure of the 70S Ribosome Complexed with mRNA and tRNA , 2006, Science.

[16]  M. Rodnina,et al.  Role and timing of GTP binding and hydrolysis during EF-G-dependent tRNA translocation on the ribosome , 2006, Proceedings of the National Academy of Sciences.

[17]  Joachim Frank,et al.  Interactions of the release factor RF1 with the ribosome as revealed by cryo-EM. , 2006, Journal of molecular biology.

[18]  Divya Sharma,et al.  The hybrid state of tRNA binding is an authentic translation elongation intermediate , 2006, Nature Structural &Molecular Biology.

[19]  M. Selmer,et al.  Crystal Structures of the Ribosome in Complex with Release Factors RF1 and RF2 Bound to a Cognate Stop Codon , 2005, Cell.

[20]  C. Gualerzi,et al.  Conformational transition of initiation factor 2 from the GTP- to GDP-bound state visualized on the ribosome , 2005, Nature Structural &Molecular Biology.

[21]  J. Holton,et al.  Structures of the Bacterial Ribosome at 3.5 Å Resolution , 2005, Science.

[22]  Kurt Fredrick,et al.  Contribution of 16S rRNA nucleotides forming the 30S subunit A and P sites to translation in Escherichia coli. , 2005, RNA.

[23]  Harry F Noller,et al.  RNA Structure: Reading the Ribosome , 2005, Science.

[24]  A. Liljas,et al.  Crystal structure of a mutant elongation factor G trapped with a GTP analogue , 2005, FEBS letters.

[25]  Joachim Frank,et al.  Mechanism for the disassembly of the posttermination complex inferred from cryo-EM studies. , 2005, Molecular cell.

[26]  Joachim Frank,et al.  The Cryo-EM Structure of a Translation Initiation Complex from Escherichia coli , 2005, Cell.

[27]  Joachim Frank,et al.  The role of tRNA as a molecular spring in decoding, accommodation, and peptidyl transfer , 2005, FEBS letters.

[28]  F. Schluenzen,et al.  X‐ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit , 2005, The EMBO journal.

[29]  Anders Liljas,et al.  Structural aspects of protein synthesis , 2004, Nature Structural Biology.

[30]  R. Jernigan,et al.  Global ribosome motions revealed with elastic network model. , 2004, Journal of structural biology.

[31]  J. Frank,et al.  Visualization of ribosome-recycling factor on the Escherichia coli 70S ribosome: Functional implications , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Roxana Nechifor,et al.  Interactions of translational factor EF-G with the bacterial ribosome before and after mRNA translocation. , 2004, Journal of molecular biology.

[33]  J. Ballesta,et al.  Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation , 2004, The EMBO journal.

[34]  Bruno P. Klaholz,et al.  Visualization of release factor 3 on the ribosome during termination of protein synthesis , 2004, Nature.

[35]  Scott M Stagg,et al.  Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy , 2003, Nature Structural Biology.

[36]  Daniel R Southworth,et al.  Ribosomal proteins S12 and S13 function as control elements for translocation of the mRNA:tRNA complex. , 2003, Molecular cell.

[37]  J. Frank,et al.  Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Joachim Frank,et al.  Locking and Unlocking of Ribosomal Motions , 2003, Cell.

[39]  Wolfgang Wintermeyer,et al.  An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation. , 2003, Molecular cell.

[40]  Måns Ehrenberg,et al.  Structure of the Escherichia coli ribosomal termination complex with release factor 2 , 2003, Nature.

[41]  J. Frank,et al.  A cryo-electron microscopic study of ribosome-bound termination factor RF2 , 2003, Nature.

[42]  M. Rodnina,et al.  Coupling of GTP hydrolysis by elongation factor G to translocation and factor recycling on the ribosome. , 2002, Biochemistry.

[43]  Wolfgang Wintermeyer,et al.  GTPase activation of elongation factors Tu and G on the ribosome. , 2002, Biochemistry.

[44]  Frank Schluenzen,et al.  High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium , 2001, Cell.

[45]  I. Vetter,et al.  The Guanine Nucleotide-Binding Switch in Three Dimensions , 2001, Science.

[46]  Narayanan Eswar,et al.  Structure of the 80S Ribosome from Saccharomyces cerevisiae—tRNA-Ribosome and Subunit-Subunit Interactions , 2001, Cell.

[47]  T. Steitz,et al.  The kink‐turn: a new RNA secondary structure motif , 2001, The EMBO journal.

[48]  R. Hilgenfeld,et al.  Conformational Change of Elongation Factor Tu (EF-Tu) Induced by Antibiotic Binding , 2001, The Journal of Biological Chemistry.

[49]  V. Ramakrishnan,et al.  Recognition of Cognate Transfer RNA by the 30S Ribosomal Subunit , 2001, Science.

[50]  A Yonath,et al.  Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3 , 2001, The EMBO journal.

[51]  Thomas A. Steitz,et al.  RNA tertiary interactions in the large ribosomal subunit: The A-minor motif , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[52]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[53]  V. Ramakrishnan,et al.  Crystal structure of an initiation factor bound to the 30S ribosomal subunit. , 2001, Science.

[54]  S. Dorner,et al.  Mechanism of ribosomal peptide bond formation. , 2001, Science.

[55]  J Frank,et al.  Movement of the decoding region of the 16 S ribosomal RNA accompanies tRNA translocation. , 2000, Journal of molecular biology.

[56]  M. Rodnina,et al.  Role of domains 4 and 5 in elongation factor G functions on the ribosome. , 2000, Journal of molecular biology.

[57]  Joachim Frank,et al.  A ratchet-like inter-subunit reorganization of the ribosome during translocation , 2000, Nature.

[58]  J. Ballesta,et al.  Three‐dimensional cryo‐electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 Å resolution , 2000, The EMBO journal.

[59]  M. Heel,et al.  Large-Scale Movement of Elongation Factor G and Extensive Conformational Change of the Ribosome during Translocation , 2000, Cell.

[60]  H. Noller,et al.  Identification of an RNA-protein bridge spanning the ribosomal subunit interface. , 1999, Science.

[61]  T. Earnest,et al.  X-ray crystal structures of 70S ribosome functional complexes. , 1999, Science.

[62]  Joachim Frank,et al.  EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome , 1999, Nature Structural Biology.

[63]  J. Frank,et al.  Effect of Buffer Conditions on the Position of tRNA on the 70 S Ribosome As Visualized by Cryoelectron Microscopy* , 1999, The Journal of Biological Chemistry.

[64]  J Frank,et al.  Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[65]  I. Wool,et al.  The ribosome-in-pieces: binding of elongation factor EF-G to oligoribonucleotides that mimic the sarcin/ricin and thiostrepton domains of 23S ribosomal RNA. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[66]  P. Moore,et al.  The conformational properties of elongation factor G and the mechanism of translocation. , 1997, Biochemistry.

[67]  M. Rodnina,et al.  Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome , 1997, Nature.

[68]  J. Frank,et al.  A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome , 1995, Nature.

[69]  A. Liljas,et al.  Three‐dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. , 1994, The EMBO journal.

[70]  J. Wang,et al.  The crystal structure of elongation factor G complexed with GDP, at 2.7 A resolution. , 1994, The EMBO journal.

[71]  Y Endo,et al.  Ribotoxin recognition of ribosomal RNA and a proposal for the mechanism of translocation. , 1992, Trends in biochemical sciences.

[72]  S. Kirillov,et al.  Puromycin reaction for the A site-bound peptidyl-tRNA. , 1992, FEBS letters.

[73]  A. Spirin,et al.  Structural dynamics of translating ribosomes. , 1992, Biochimie.

[74]  K. Nierhaus,et al.  Kinetic and thermodynamic parameters for tRNA binding to the ribosome and for the translocation reaction. , 1992, The Journal of biological chemistry.

[75]  S. Kirillov,et al.  Puromycin reaction for the A site‐bound peptidyl‐tRNA , 1992, Biochimie.

[76]  J. Frank,et al.  Three-dimensional reconstruction of the 70S Escherichia coli ribosome in ice: the distribution of ribosomal RNA , 1991, The Journal of cell biology.

[77]  Harry F. Noller,et al.  Intermediate states in the movement of transfer RNA in the ribosome , 1989, Nature.

[78]  H. Noller,et al.  Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA , 1988, Nature.

[79]  K. Nierhaus,et al.  Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. , 1987, Biochimie.

[80]  E. Makarov,et al.  [How do ribosome binding sites recognize the functional state of tRNA?]. , 1984, Molekuliarnaia biologiia.

[81]  Y. Ovchinnikov,et al.  Elongation factor G and protein S12 are the nearest neighbours in the Escherichia coli ribosome. , 1981, Journal of molecular biology.

[82]  A. Spirin,et al.  Factor-free ("non-enzymic") and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes. , 1976, Journal of molecular biology.

[83]  A. Spirin,et al.  Ribosomal protein S12 and ‘non‐enzymatic’ translocation , 1974, FEBS letters.

[84]  A. Spirin,et al.  Interaction of SH‐reagents with the ribosomal 30 S subparticle and ‘non‐enzymatic’ translocation , 1974, FEBS letters.

[85]  Smolyaninov Vv,et al.  Study of the mechanism of translocation in ribosomes. 1. Polyphenylalanine synthesis in Escherichia coli ribosomes without participation of guanosine-5'-triphosphate and protein translation factors. , 1971 .

[86]  A. Spirin,et al.  Stimulation of "non-enzymic" translocation in ribosomes by p-chloromercuribenzoate. , 1971, FEBS letters.

[87]  S. Pestka Studies on the formation of transfer ribonucleic acid-ribosome complexes. VI. Oligopeptide synthesis and translocation on ribosomes in the presence and absence of soluble transfer factors. , 1969, The Journal of biological chemistry.

[88]  A. Spirin How does the ribosome work? A hypothesis based on the two subunit construction of the ribosome. , 1968, Currents in modern biology.

[89]  S. Pestka Studies on the formation of transfer ribonucleic acid-ribosome complexes. 3. The formation of peptide bonds by ribosomes in the absence of supernatant enzymes. , 1968, The Journal of biological chemistry.

[90]  M. Bretscher Translocation in Protein Synthesis: A Hybrid Structure Model , 1968, Nature.

[91]  R. Green,et al.  EF-G-independent reactivity of a pre-translocation-state ribosome complex with the aminoacyl tRNA substrate puromycin supports an intermediate (hybrid) state of tRNA binding. , 2004, RNA.

[92]  M. Rodnina,et al.  Mechanism of elongation factor G function in tRNA translocation on the ribosome. , 2001, Cold Spring Harbor symposia on quantitative biology.

[93]  J. Frank,et al.  Ratchet-like movements between the two ribosomal subunits: their implications in elongation factor recognition and tRNA translocation. , 2001, Cold Spring Harbor symposia on quantitative biology.

[94]  R. Brimacombe,et al.  The ribosomal neighbourhood of the central fold of tRNA: cross-links from position 47 of tRNA located at the A, P or E site. , 1995, Nucleic acids research.

[95]  G. Kramer,et al.  Structure, Function, and Genetics of Ribosomes , 1986, Springer Series in Molecular Biology.