Multiscale Medial Loci and Their Properties

Blum's medial axes have great strengths, in principle, in intuitively describing object shape in terms of a quasi-hierarchy of figures. But it is well known that, derived from a boundary, they are damagingly sensitive to detail in that boundary. The development of notions of spatial scale has led to some definitions of multiscale medial axes different from the Blum medial axis that considerably overcame the weakness. Three major multiscale medial axes have been proposed: iteratively pruned trees of Voronoi edges (Ogniewicz, 1993; Székely, 1996; Näf, 1996), shock loci of reaction-diffusion equations (Kimia et al., 1995; Siddiqi and Kimia, 1996), and height ridges of medialness (cores) (Fritsch et al., 1994; Morse et al., 1993; Pizer et al., 1998). These are different from the Blum medial axis, and each has different mathematical properties of generic branching and ending properties, singular transitions, and geometry of implied boundary, and they have different strengths and weaknesses for computing object descriptions from images or from object boundaries. These mathematical properties and computational abilities are laid out and compared and contrasted in this paper.

[1]  S. Zucker,et al.  On the psychophysics of the shape triangle , 2001, Vision Research.

[2]  Martin Styner,et al.  Medial Models Incorporating Object Variability for 3D Shape Analysis , 2001, IPMI.

[3]  H. Blum Biological shape and visual science. I. , 1973, Journal of theoretical biology.

[4]  M. Brady,et al.  Smoothed Local Symmetries and Their Implementation , 1984 .

[5]  Peter J. Giblin,et al.  Ridges, crests and sub-parabolic lines of evolving surfaces , 1996, International Journal of Computer Vision.

[6]  Kaleem Siddiqi,et al.  The Hamilton-Jacobi skeleton , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[7]  Alfred M. Bruckstein,et al.  Skeletonization via Distance Maps and Level Sets , 1995, Comput. Vis. Image Underst..

[8]  Kaleem Siddiqi,et al.  Divergence-Based Medial Surfaces , 2000, ECCV.

[9]  James N. Damon,et al.  Properties of Ridges and Cores for Two-Dimensional Images , 1999, Journal of Mathematical Imaging and Vision.

[10]  Michel Schmitt,et al.  Some examples of algorithm analysis in computational geometry by means of mathematical morphological techniques , 1988, Geometry and Robotics.

[11]  Benjamin B. Kimia,et al.  A formal classification of 3D medial axis points and their local geometry , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[12]  Joachim Weickert,et al.  Scale-Space Theories in Computer Vision , 1999, Lecture Notes in Computer Science.

[13]  Dominique Attali,et al.  Using polyballs to approximate shapes and skeletons , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[14]  Lee R. Nackman Three-dimensional shape description using the symmetric axis transform , 1982 .

[15]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[16]  Jacob D. Furst,et al.  Marching ridges , 2001, SIP.

[17]  Olivier D. Faugeras,et al.  Level Sets and Distance Functions , 2000, ECCV.

[18]  B. Geiger Three-dimensional modeling of human organs and its application to diagnosis and surgical planning , 1993 .

[19]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[20]  F. Meyer Skeletons and perceptual graphs , 1989 .

[21]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[22]  Grégoire Malandain,et al.  Euclidean skeletons , 1998, Image Vis. Comput..

[23]  Gabriella Sanniti di Baja,et al.  Ridge points in Euclidean distance maps , 1992, Pattern Recognit. Lett..

[24]  David H. Eberly,et al.  Ridges in Image and Data Analysis , 1996, Computational Imaging and Vision.

[25]  James Elder,et al.  The effect of contour closure on the rapid discrimination of two-dimensional shapes , 1993, Vision Research.

[26]  J. Brandt Describing a solid with the three-dimensional skeleton , 1992 .

[27]  Kaleem Siddiqi,et al.  Matching Hierarchical Structures Using Association Graphs , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Frederic Fol Leymarie,et al.  Simulating the Grassfire Transform Using an Active Contour Model , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  The Maximal Scale Ridge , 1999, Scale-Space.

[30]  James Damon,et al.  Generic Structure of Two-Dimensional Images Under Gaussian Blurring , 1998, SIAM J. Appl. Math..

[31]  HARRY BLUM,et al.  Shape description using weighted symmetric axis features , 1978, Pattern Recognit..

[32]  Robert L. Ogniewicz,et al.  Discrete Voronoi skeletons , 1992 .

[33]  Chris Pudney,et al.  Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images , 1998, Comput. Vis. Image Underst..

[34]  Benjamin B. Kimia,et al.  Shapes, shocks, and deformations I: The components of two-dimensional shape and the reaction-diffusion space , 1995, International Journal of Computer Vision.

[35]  H. Blum Biological shape and visual science (part I) , 1973 .

[36]  V. Ralph Algazi,et al.  Continuous skeleton computation by Voronoi diagram , 1991, CVGIP Image Underst..

[37]  D. T. Lee,et al.  Medial Axis Transformation of a Planar Shape , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Dinesh Manocha,et al.  Computing the medial axis of a polyhedron reliably and efficiently , 2000 .

[39]  Luigi P. Cordella,et al.  From Local Maxima to Connected Skeletons , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  J. N. Mather,et al.  Distance from a submanifold in Euclidean space , 1981 .

[41]  Kaleem Siddiqi,et al.  Ligature instabilities in the perceptual organization of shape , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[42]  Tyng-Luh Liu,et al.  Approximate tree matching and shape similarity , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[43]  Stan Sclaroff,et al.  Deformable prototypes for encoding shape categories in image databases , 1995, Pattern Recognit..

[44]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[45]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[46]  Donald D. Hoffman,et al.  Codon constraints on closed 2D shapes , 1985, Computer Vision Graphics and Image Processing.

[47]  J. W. Bruce,et al.  Growth, motion and 1-parameter families of symmetry sets , 1986, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[48]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[49]  Petros Maragos,et al.  Evolution equations for continuous-scale morphology , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[50]  James N. Damon,et al.  Generic transitions of relative critical sets in parametrized families with applications to image analysis , 1999 .

[51]  Gábor Székely,et al.  Mapping the human cerebral cortex using 3-D medial manifolds , 1992, Other Conferences.

[52]  Stephen M. Pizer,et al.  Hierarchical Shape Description Via the Multiresolution Symmetric Axis Transform , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  David H. Eberly,et al.  Zoom-Invariant Vision of Figural Shape: The Mathematics of Cores , 1996, Comput. Vis. Image Underst..

[54]  Kaleem Siddiqi,et al.  Hamilton-Jacobi Skeletons , 2002, International Journal of Computer Vision.

[55]  Jayant Shah,et al.  A common framework for curve evolution, segmentation and anisotropic diffusion , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[56]  PaperNo Recognition of shapes by editing shock graphs , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[57]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[58]  Dominique Attali Squelettes et graphes de Voronoï 2D et 3D. (2D and 3D skeletons and Voronoi graphs) , 1995 .

[59]  Stephen M. Pizer,et al.  Object representation by cores: Identifying and representing primitive spatial regions , 1995, Vision Research.

[60]  Michael Brady,et al.  The Curvature Primal Sketch , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[61]  Stephen R. Aylward,et al.  Segmenting 3D Branching Tubular Structures Using Cores , 2003, MICCAI.

[62]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[63]  R. Brubaker Models for the perception of speech and visual form: Weiant Wathen-Dunn, ed.: Cambridge, Mass., The M.I.T. Press, I–X, 470 pages , 1968 .

[64]  Olaf Kübler,et al.  Hierarchic Voronoi skeletons , 1995, Pattern Recognit..

[65]  Richard G. Kurial,et al.  Representation and recognition , 1990 .

[66]  Jason Miller,et al.  Relative critical sets in RR(N) and applications to image analysis , 1998 .

[67]  Edwin R. Hancock,et al.  Scale-space vector fields for feature analysis , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[68]  Reinhard Klette,et al.  Theoretical Foundations of Computer Vision , 1996, Computing Supplement.

[69]  Kaleem Siddiqi,et al.  Robust and efficient skeletal graphs , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[70]  Gabriella Sanniti di Baja,et al.  Computing Voronoi diagrams in digital pictures , 1986, Pattern Recognit. Lett..

[71]  Jayant Shah,et al.  Extraction of Shape Skeletons from Grayscale Images , 1997, Comput. Vis. Image Underst..

[72]  Paul A. Yushkevich,et al.  Deformable M-Reps for 3D Medical Image Segmentation , 2003, International Journal of Computer Vision.

[73]  Alan Liu,et al.  Multiscale Medial Analysis of Medical Images , 1993, IPMI.

[74]  J. Sethian Level set methods : evolving interfaces in geometry, fluid mechanics, computer vision, and materials science , 1996 .

[75]  Dinesh Manocha,et al.  Accurate computation of the medial axis of a polyhedron , 1999, SMA '99.

[76]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[77]  S. Zucker,et al.  Toward a computational theory of shape: an overview , 1990, eccv 1990.

[78]  Chi-Wang Shu,et al.  Geometric shock-capturing ENO schemes for subpixel interpolation, computation, and curve evolution , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[79]  Gérard G. Medioni,et al.  Hierarchical Decomposition and Axial Shape Description , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[80]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[81]  Isaac Weiss,et al.  Shape Reconstruction on a Varying Mesh , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[82]  Stephen M. Pizer,et al.  Zoom-Invariant Vision of Figural Shape: Effects on Cores of Image Disturbances , 1998, Comput. Vis. Image Underst..

[83]  Alan Liu,et al.  The multiscale medial axis and its applications in image registration , 1994, Pattern Recognit. Lett..

[84]  Jason Miller,et al.  Image Loci are Ridges in Geometric Spaces , 1997, Scale-Space.

[85]  Alan Liu,et al.  MuItiscale medial analysis of medical images , 1994, Image Vis. Comput..

[86]  Martin Held,et al.  Voronoi diagrams and offset curves of curvilinear polygons , 1998, Comput. Aided Des..

[87]  Michael Leyton,et al.  Symmetry-curvature duality , 1987, Comput. Vis. Graph. Image Process..

[88]  Steven W. Zucker,et al.  On the evolution of the skeleton , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[89]  Alan L. Yuille,et al.  FORMS: A flexible object recognition and modelling system , 1996, International Journal of Computer Vision.

[90]  Les A. Piegl,et al.  Delaunay triangulation using a uniform grid , 1993, IEEE Computer Graphics and Applications.

[91]  Benjamin B. Kimia,et al.  On the Local Form and Transitions of Symmetry Sets, Medial Axes, and Shocks , 2004, International Journal of Computer Vision.

[92]  Paul A. Yushkevich,et al.  Segmentation, registration, and measurement of shape variation via image object shape , 1999, IEEE Transactions on Medical Imaging.

[93]  C. A. Burbeck,et al.  Scaled position integration areas: accounting for Weber’s law for separation , 1993 .

[94]  Nicholas Ayache,et al.  Topological segmentation of discrete surfaces , 2005, International Journal of Computer Vision.

[95]  Lee R. Nackman,et al.  Three-Dimensional Shape Description Using the Symmetric Axis Transform I: Theory , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[96]  C. A. Burbeck,et al.  Linking object boundaries at scale: a common mechanism for size and shape judgments , 1996, Vision Research.

[97]  Yosef Yomdin,et al.  On the local structure of a generic central set , 1981 .

[98]  P. Lax Shock Waves and Entropy , 1971 .

[99]  Stephen M. Pizer,et al.  Untangling the Blum Medial Axis Transform , 2003, International Journal of Computer Vision.

[100]  Kaleem Siddiqi,et al.  A shock grammar for recognition , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[101]  D. Marr,et al.  Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[102]  Kaleem Siddiqi,et al.  Contour Fragment Grouping and Shared, Simple Occluders , 1999, Comput. Vis. Image Underst..

[103]  Ulrich Eckhardt,et al.  Regularization of the medial axis transform , 1992, Theoretical Foundations of Computer Vision.