Bifurcation and Number of Periodic Solutions of Some 2n-Dimensional Systems and Its Application

In high dimension, the bifurcation theory of periodic orbits of nonlinear dynamics systems are difficult to establish in general. In this paper, by performing the curvilinear coordinate frame and constructing a Poincare map, we obtain some sufficient conditions of the bifurcation of periodic solutions of some 2n-dimensional systems for the unperturbed system in two cases: one is a decoupled n-degree-of-freedom nonlinear Hamiltonian system and the other has an isolated invariant torus. We use a new method and study new types of systems compared with the existing results. As an application we study the bifurcation and number of periodic solutions of an ice covered suspension system. Under a certain parametrical condition, the number of periodic solutions of this system can be 2 or 1 with the variation of parameter $$p_{2}$$ .

[1]  Jesús F. Palacián,et al.  Periodic Solutions and KAM Tori in a Triaxial Potential , 2017, SIAM J. Appl. Dyn. Syst..

[2]  Singular limit cycle bifurcations to closed orbits and invariant tori , 2006 .

[3]  Jorge L. Moiola,et al.  Detection of Limit Cycle bifurcations Using Harmonic Balance Methods , 2004, Int. J. Bifurc. Chaos.

[4]  Carmen Chicone,et al.  Lyapunov-Schmidt Reduction and Melnikov Integrals for Bifurcation of Periodic Solutions in Coupled Oscillators , 1994 .

[5]  Maoan Han,et al.  Lower bounds for the Hilbert number of polynomial systems , 2012 .

[6]  J. Montaldi,et al.  Periodic Orbits in Hamiltonian Systems with Involutory Symmetries , 2015, 1507.01392.

[7]  Maoan Han,et al.  Perturbations of parallel flows on the sphere in R3 , 2009 .

[8]  J. Li,et al.  Bifurcation of Multiple Limit Cycles for a Rotor-Active Magnetic Bearings System with Time-Varying Stiffness , 2008, Int. J. Bifurc. Chaos.

[9]  Miklós Farkas,et al.  Periodic Motions , 1994 .

[10]  BIFURCATION OF LIMIT CYCLES FROM A 4-DIMENSIONAL CENTER IN R m IN RESONANCE 1 : N , 2012 .

[11]  Limit cycles of resonant four-dimensional polynomial systems , 2010 .

[12]  T. Quan,et al.  Bifurcation and number of subharmonic solutions of a 4D non-autonomous slow–fast system and its application , 2018 .

[13]  New 1:1:1 periodic solutions in $$3$$3-dimensional galactic-type Hamiltonian systems , 2014 .

[14]  P. J. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[15]  Jaume Llibre,et al.  Averaging methods for finding periodic orbits via Brouwer degree , 2004 .

[16]  Matthias Stiefenhofer Unfolding Singularly Perturbed Bogdanov Points , 2000, SIAM J. Math. Anal..

[17]  J. Hale,et al.  Methods of Bifurcation Theory , 1996 .

[18]  L. Barreira,et al.  Limit cycles bifurcating from a zero–Hopf singularity in arbitrary dimension , 2018 .

[19]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[20]  V. I. Arnol'd,et al.  Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields , 1977 .

[21]  Jaume Llibre,et al.  A unified proof on the weak Hilbert 16th problem for n=2☆ , 2006 .

[22]  Philip Holmes,et al.  Periodic orbits in slowly varying oscillators , 1987 .

[23]  Jaume Llibre,et al.  Bifurcation of limit cycles from a 4-dimensional center in 1: n resonance , 2009, Appl. Math. Comput..

[24]  Philip Holmes,et al.  Homoclinic orbits in slowly varying oscillators , 1987 .

[25]  J. Llibre,et al.  Birth of limit cycles for a class of continuous and discontinuous differential systems in (d + 2)–dimension , 2015, 1501.01987.

[26]  J. Llibre,et al.  New families of periodic orbits for a galactic potential , 2016 .

[27]  Jibin Li,et al.  Hilbert's 16th Problem and bifurcations of Planar Polynomial Vector Fields , 2003, Int. J. Bifurc. Chaos.