Stereo Day-for-Night

Several approaches attempt to reproduce the appearance of a scotopic low-light night scene on a photopic display (“day-for-night”) by introducing color desaturation, loss of acuity, and the Purkinje shift toward blue colors. We argue that faithful stereo reproduction of night scenes on photopic stereo displays requires manipulation of not only color but also binocular disparity. To this end, we performed a psychophysics experiment to devise a model of disparity at scotopic luminance levels. Using this model, we can match binocular disparity of a scotopic stereo content displayed on a photopic monitor to the disparity that would be perceived if the scene was actually scotopic. The model allows for real-time computation of common stereo content as found in interactive applications such as simulators or computer games.

[1]  Hans-Peter Seidel,et al.  Optimizing Disparity for Motion in Depth , 2013, Comput. Graph. Forum.

[2]  Jan Kautz,et al.  Two-frame stereo photography in low-light settings: a preliminary study , 2012, CVMP.

[3]  Hans-Peter Seidel,et al.  A luminance-contrast-aware disparity model and applications , 2012, ACM Trans. Graph..

[4]  Wolfgang Heidrich,et al.  HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions , 2011, ACM Trans. Graph..

[5]  James F. O'Brien,et al.  Perceptually based tone mapping for low-light conditions , 2011, ACM Trans. Graph..

[6]  Hans-Peter Seidel,et al.  A perceptual model for disparity , 2011, ACM Trans. Graph..

[7]  M. Gross,et al.  Nonlinear disparity mapping for stereoscopic 3D , 2010, ACM Trans. Graph..

[8]  Erik Reinhard,et al.  High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting , 2010 .

[9]  Saumil S. Patel,et al.  Relationship between threshold and suprathreshold perception of position and stereoscopic depth. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[10]  David M. Hoffman,et al.  Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. , 2008, Journal of vision.

[11]  Mark D. Fairchild,et al.  iCAM06: A refined image appearance model for HDR image rendering , 2007, J. Vis. Commun. Image Represent..

[12]  Marcelo Bertalmío,et al.  Visual Acuity in Day for Night , 2006, International Journal of Computer Vision.

[13]  Hans-Peter Seidel,et al.  Lossy compression of high dynamic range images and video , 2006, Electronic Imaging.

[14]  Yoshio Nakashima,et al.  Disparity Limit for Binocular Fusion in Fovea , 2006 .

[15]  M. Barris Vision and Art: The Biology of Seeing , 2005 .

[16]  Christoph Fehn,et al.  Depth-image-based rendering (DIBR), compression, and transmission for a new approach on 3D-TV , 2004, IS&T/SPIE Electronic Imaging.

[17]  M. Landy,et al.  Why Is Spatial Stereoresolution So Low? , 2004, The Journal of Neuroscience.

[18]  F. Kingdom,et al.  Interactions between chromatic- and luminance-contrast-sensitive stereopsis mechanisms , 2002, Vision Research.

[19]  Peter Shirley,et al.  A Spatial Post-Processing Algorithm for Images of Night Scenes , 2002, J. Graphics, GPU, & Game Tools.

[20]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[21]  Greg Ward,et al.  High dynamic range imaging , 2004, SIGGRAPH '04.

[22]  Donald P. Greenberg,et al.  Time-dependent visual adaptation for fast realistic image display , 2000, SIGGRAPH.

[23]  Frédo Durand,et al.  Interactive Tone Mapping , 2000, Rendering Techniques.

[24]  F. Kingdom,et al.  On the independence of chromatic and achromatic stereopsis mechanisms , 1997, Vision Research.

[25]  Christine D. Piatko,et al.  A visibility matching tone reproduction operator for high dynamic range scenes , 1997, SIGGRAPH '97.

[26]  Donald P. Greenberg,et al.  A model of visual adaptation for realistic image synthesis , 1996, SIGGRAPH.

[27]  J M Wolfe,et al.  Binocular Rivalry and Fusion under Scotopic Luminances , 1994, Perception.

[28]  Margaret S. Livingstone,et al.  Stereopsis and positional acuity under dark adaptation , 1994, Vision Research.

[29]  L. Cormack,et al.  Interocular correlation, luminance contrast and cyclopean processing , 1991, Vision Research.

[30]  D. J. Bradley Night Vision: Basic, Clinical and Applied Aspects , 1991 .

[31]  Clifton M. Schor,et al.  Is edge information for stereoacuity spatially channeled? , 1989, Vision Research.

[32]  Gordon E. Legge,et al.  Stereopsis and contrast , 1989, Vision Research.

[33]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[34]  A. Watson,et al.  Quest: A Bayesian adaptive psychometric method , 1983, Perception & psychophysics.

[35]  J. Mayhew,et al.  Contrast Sensitivity Function for Stereopsis , 1978, Perception.

[36]  A Lit,et al.  Depth-discrimination thresholds for stationary and oscillating targets at various levels of retinal illuminance. , 1966, Journal of the Optical Society of America.

[37]  C. Wheatstone XVIII. Contributions to the physiology of vision. —Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision , 1962, Philosophical Transactions of the Royal Society of London.

[38]  A. Lit,et al.  Depth-discrimination thresholds as a function of binocular differences of retinal illuminance at scotopic and photopic levels. , 1959, Journal of the Optical Society of America.

[39]  S. Hecht THE RELATION BETWEEN VISUAL ACUITY AND ILLUMINATION , 1928, The Journal of general physiology.

[40]  Mtm Marc Lambooij,et al.  Visual Discomfort and Visual Fatigue of Stereoscopic Displays: A Review , 2009 .

[41]  Martin S Banks,et al.  Limits of stereopsis explained by local cross-correlation. , 2009, Journal of vision.