in Minimum 0-Extension Problems

[1]  Alexander V. Karzanov,et al.  Minimum 0-Extensions of Graph Metrics , 1998, Eur. J. Comb..

[2]  Eric R. Verheul,et al.  Modular Interval Spaces , 1993 .

[3]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[4]  H. -J. Bandelt Hereditary modular graphs , 1988, Comb..

[5]  Éva Tardos,et al.  Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields , 2002, JACM.

[6]  Andreas W. M. Dress,et al.  Gated sets in metric spaces , 1987 .

[7]  Stanislav Zivny,et al.  The Power of Linear Programming for Valued CSPs , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[8]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .

[9]  Alexander V. Karzanov Hard cases of the multifacility location problem , 2004, Discret. Appl. Math..

[10]  Vladimir Kolmogorov,et al.  New algorithms for convex cost tension problem with application to computer vision , 2009, Discret. Optim..

[11]  Vladimir Kolmogorov,et al.  Submodularity on a Tree: Unifying $L^\natural$ -Convex and Bisubmodular Functions , 2010, MFCS.

[12]  Hiroshi Hirai,et al.  Half-integrality of node-capacitated multiflows and tree-shaped facility locations on trees , 2010, Math. Program..

[13]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[14]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[15]  Antoon Kolen,et al.  Tree network and planar rectilinear location theory , 1986 .

[16]  Liqun Qi,et al.  Directed submodularity, ditroids and directed submodular flows , 1988, Math. Program..

[17]  Kazuo Murota,et al.  Algorithms in discrete convex analysis , 2000 .

[18]  Fredrik Kuivinen,et al.  On the complexity of submodular function minimisation on diamonds , 2009, Discret. Optim..

[19]  Francesca Rossi,et al.  Semiring-based constraint satisfaction and optimization , 1997, JACM.

[20]  Mihalis Yannakakis,et al.  The Complexity of Multiterminal Cuts , 1994, SIAM J. Comput..

[21]  Thomas Schiex,et al.  Valued Constraint Satisfaction Problems: Hard and Easy Problems , 1995, IJCAI.

[22]  A. V. Karzanov Polyhedra related to undirected multicommodity flows , 1989 .

[23]  Hiroshi Hirai,et al.  Folder Complexes and Multiflow Combinatorial Dualities , 2011, SIAM J. Discret. Math..

[24]  Anna Huber,et al.  Towards Minimizing k-Submodular Functions , 2012, ISCO.

[25]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[26]  Hans-Jürgen Bandelt,et al.  A Characterization of Minimizable Metrics in the Multifacility Location Problem , 2000, Eur. J. Comb..

[27]  H. D. Ratliff,et al.  A Cut Approach to the Rectilinear Distance Facility Location Problem , 1978, Oper. Res..

[28]  André Bouchet,et al.  Multimatroids I. Coverings by Independent Sets , 1997, SIAM J. Discret. Math..

[29]  R. L. Francis,et al.  State of the Art-Location on Networks: A Survey. Part II: Exploiting Tree Network Structure , 1983 .

[30]  H. Bandelt Networks with condorcet solutions , 1985 .

[31]  Alexander V. Karzanov,et al.  Metrics with finite sets of primitive extensions , 1998 .

[32]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[33]  Kazuo Murota,et al.  Discrete convex analysis , 1998, Math. Program..

[34]  Alexander V. Karzanov One more well-solved case of the multifacility location problem , 2004, Discret. Optim..

[35]  Victor Chepoi,et al.  Graphs of Some CAT(0) Complexes , 2000, Adv. Appl. Math..

[36]  Victor Chepoi,et al.  A Multifacility Location Problem on Median Spaces , 1996, Discret. Appl. Math..

[37]  Van de M. L. J. Vel Theory of convex structures , 1993 .

[38]  Vladimir Kolmogorov,et al.  The complexity of conservative valued CSPs , 2011, JACM.

[39]  Hiroshi Hirai,et al.  Tight spans of distances and the dual fractionality of undirected multiflow problems , 2009, J. Comb. Theory, Ser. B.