Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High‐Resolution Simulations

Climate projections continue to be marred by large uncertainties, which originate in processes that need to be parameterized, such as clouds, convection, and ecosystems. But rapid progress is now within reach. New computational tools and methods from data assimilation and machine learning make it possible to integrate global observations and local high-resolution simulations in an Earth system model (ESM) that systematically learns from both and quantifies uncertainties. Here we propose a blueprint for such an ESM. We outline how parameterization schemes can learn from global observations and targeted high-resolution simulations, for example, of clouds and convection, through matching low-order statistics between ESMs, observations, and high-resolution simulations. We illustrate learning algorithms for ESMs with a simple dynamical system that shares characteristics of the climate system; and we discuss the opportunities the proposed framework presents and the challenges that remain to realize it.

[1]  Marc Bocquet,et al.  Joint state and parameter estimation with an iterative ensemble Kalman smoother , 2013 .

[2]  Robert Pincus,et al.  Parameter estimation using data assimilation in an atmospheric general circulation model: From a perfect toward the real world , 2013 .

[3]  Manuel Pulido,et al.  Parameter Estimation Using Ensemble-Based Data Assimilation in the Presence of Model Error , 2015 .

[4]  Daehyun Kim,et al.  MJO and Convectively Coupled Equatorial Waves Simulated by CMIP5 Climate Models , 2013 .

[5]  M. Köhler,et al.  Unified treatment of dry convective and stratocumulus‐topped boundary layers in the ECMWF model , 2011 .

[6]  Syukuro Manabe,et al.  NUMERICAL RESULTS FROM A NINE-LEVEL GENERAL CIRCULATION MODEL OF THE ATMOSPHERE1 , 1965 .

[7]  Heikki Haario,et al.  Efficient MCMC for Climate Model Parameter Estimation: Parallel Adaptive Chains and Early Rejection , 2012 .

[8]  Andrew M. Stuart,et al.  Analysis of the Ensemble Kalman Filter for Inverse Problems , 2016, SIAM J. Numer. Anal..

[9]  P. Cox,et al.  Emergent constraints on climate‐carbon cycle feedbacks in the CMIP5 Earth system models , 2014 .

[10]  Pierre Friedlingstein,et al.  A Review of Uncertainties in Global Temperature Projections over the Twenty-First Century , 2008 .

[11]  Veronika Eyring,et al.  Evaluation of Climate Models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2013 .

[12]  Martin Schroeder,et al.  Extracting the tropospheric short-wave influences on subseasonal prediction of precipitation in the United States using CFSv2 , 2017, Climate Dynamics.

[13]  Takemasa Miyoshi,et al.  Estimating Model Parameters with Ensemble-Based Data Assimilation: A Review , 2013 .

[14]  Valerio Lucarini,et al.  Mathematical and physical ideas for climate science , 2013, 1311.1190.

[15]  S. Bony,et al.  Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models , 2001 .

[16]  A. Stuart,et al.  Data Assimilation: A Mathematical Introduction , 2015, 1506.07825.

[17]  Akio Arakawa,et al.  CLOUDS AND CLIMATE: A PROBLEM THAT REFUSES TO DIE. Clouds of many , 2022 .

[18]  S. Bony,et al.  The ‘too few, too bright’ tropical low‐cloud problem in CMIP5 models , 2012 .

[19]  S. Bony,et al.  How Well Do We Understand and Evaluate Climate Change Feedback Processes , 2006 .

[20]  Shaocheng Xie,et al.  On the Correspondence between Short- and Long-Time-Scale Systematic Errors in CAM4/CAM5 for the Year of Tropical Convection , 2012 .

[21]  W. Collins,et al.  Evaluation of climate models , 2013 .

[22]  Jialin Lin,et al.  The Double-ITCZ Problem in IPCC AR4 Coupled GCMs: Ocean–Atmosphere Feedback Analysis , 2007 .

[23]  Jean-Christophe Golaz,et al.  Evaluating cloud tuning in a climate model with satellite observations , 2013 .

[24]  Andrew Gettelman,et al.  Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations , 2012 .

[25]  David A. Randall,et al.  An ocean‐atmosphere climate simulation with an embedded cloud resolving model , 2010 .

[26]  J. Dudhia,et al.  Examining Two-Way Grid Nesting for Large Eddy Simulation of the PBL Using the WRF Model , 2007 .

[27]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[28]  C. Bretherton,et al.  Variability in modeled cloud feedback tied to differences in the climatological spatial pattern of clouds , 2018, Climate Dynamics.

[29]  Tatsuya Yokota,et al.  Global Concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary Results , 2009 .

[30]  T. Schneider,et al.  Constraints on Climate Sensitivity from Space-Based Measurements of Low-Cloud Reflection , 2016 .

[31]  Jeffrey L. Anderson,et al.  The Data Assimilation Research Testbed: A Community Facility , 2009 .

[32]  D. Randall,et al.  A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results , 2001 .

[33]  D. Randall,et al.  Fitting and Analyzing LES Using Multiple Trivariate Gaussians , 2015 .

[34]  B. Soden,et al.  An Assessment of Climate Feedbacks in Coupled Ocean–Atmosphere Models , 2006 .

[35]  Coralia Cartis,et al.  Can Top-of-Atmosphere Radiation Measurements Constrain Climate Predictions? Part I: Tuning , 2013 .

[36]  Leonard A. Smith,et al.  Uncertainty in predictions of the climate response to rising levels of greenhouse gases , 2005, Nature.

[37]  S. Klein,et al.  Positive tropical marine low‐cloud cover feedback inferred from cloud‐controlling factors , 2015 .

[38]  B. Tian Spread of model climate sensitivity linked to double‐Intertropical Convergence Zone bias , 2015 .

[39]  Gen Li Tropical biases in CMIP 5 multi-model ensemble : The excessive equatorial Pacific cold tongue and double ITCZ problems , 2022 .

[40]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[41]  David M. Winker,et al.  CloudSat and CALIPSO within the A-Train: Ten Years of Actively Observing the Earth System , 2017 .

[42]  Wolfgang Knorr,et al.  Is the airborne fraction of anthropogenic CO2 emissions increasing? , 2009 .

[43]  Tsuyoshi Koshiro,et al.  Origins of the Solar Radiation Biases over the Southern Ocean in CFMIP2 Models , 2014 .

[44]  Masaki Satoh,et al.  Warm Cores, Eyewall Slopes, and Intensities of Tropical Cyclones Simulated by a 7-km-Mesh Global Nonhydrostatic Model , 2016 .

[45]  Shaocheng Xie,et al.  Metrics and Diagnostics for Precipitation-Related Processes in Climate Model Short-Range Hindcasts , 2013 .

[46]  Minghua Zhang,et al.  Double ITCZ in Coupled Ocean‐Atmosphere Models: From CMIP3 to CMIP5 , 2015 .

[47]  D. Klocke,et al.  Tuning the climate of a global model , 2012 .

[48]  Qiqi Wang,et al.  Least Squares Shadowing sensitivity analysis of chaotic limit cycle oscillations , 2012, J. Comput. Phys..

[49]  Renate Hagedorn,et al.  Representing model uncertainty in weather and climate prediction , 2005 .

[50]  N. Meinshausen,et al.  Greenhouse-gas emission targets for limiting global warming to 2 °C , 2009, Nature.

[51]  Pierre Friedlingstein,et al.  Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks , 2014 .

[52]  Richard C. J. Somerville,et al.  Empirical orthogonal function analysis of the diurnal cycle of precipitation in a multi‐scale climate model , 2009 .

[53]  Marco A. Iglesias,et al.  A regularizing iterative ensemble Kalman method for PDE-constrained inverse problems , 2015, 1505.03876.

[54]  D. Randall,et al.  Simulations of the Atmospheric General Circulation Using a Cloud-Resolving Model as a Superparameterization of Physical Processes , 2005 .

[55]  K. Emanuel,et al.  Optimal Sites for Supplementary Weather Observations: Simulation with a Small Model , 1998 .

[56]  Valerio Lucarini,et al.  Parameterization of stochastic multiscale triads , 2016, 1606.08123.

[57]  Bruce A. Wielicki,et al.  Measurements, Models, and Hypotheses in the Atmospheric Sciences , 1997 .

[58]  S. Manabe,et al.  SIMULATED CLIMATOLOGY OF A GENERAL CIRCULATION MODEL WITH A HYDROLOGIC CYCLE , 1965 .

[59]  Cathy Hohenegger,et al.  Simulating deep convection with a shallow convection scheme , 2010 .

[60]  Chris Hope,et al.  The $10 trillion value of better information about the transient climate response , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[61]  J. David Neelin,et al.  Moisture Vertical Structure, Column Water Vapor, and Tropical Deep Convection , 2009 .

[62]  E. Lorenz Predictability of Weather and Climate: Predictability – a problem partly solved , 2006 .

[63]  Richard C. J. Somerville,et al.  Assessing the Diurnal Cycle of Precipitation in a Multi‐Scale Climate Model , 2009 .

[64]  Tim Palmer,et al.  Climate forecasting: Build high-resolution global climate models , 2014, Nature.

[65]  G. Grell,et al.  A generalized approach to parameterizing convection combining ensemble and data assimilation techniques , 2002 .

[66]  James C McWilliams,et al.  Considerations for parameter optimization and sensitivity in climate models , 2010, Proceedings of the National Academy of Sciences.

[67]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[68]  A. P. Siebesma,et al.  Climate goals and computing the future of clouds , 2017 .

[69]  Z. X. Li,et al.  Interpretation of Cloud-Climate Feedback as Produced by 14 Atmospheric General Circulation Models , 1989, Science.

[70]  David M. Romps,et al.  Nature versus Nurture in Shallow Convection , 2010 .

[71]  S. Bony,et al.  Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements , 2005 .

[72]  C. Jakob Accelerating progress in global atmospheric model development through improved parameterizations: challenges, opportunities, and strategies , 2010 .

[73]  Sungsu Park,et al.  A Unified Convection Scheme (UNICON). Part I: Formulation , 2014 .

[74]  M. W. Reeks,et al.  Droplet growth in warm turbulent clouds , 2012 .

[75]  C. Frankenberg,et al.  Prospects for Chlorophyll Fluorescence Remote Sensing from the Orbiting Carbon Observatory-2 , 2014 .

[76]  E. Dunlea,et al.  A national strategy for advancing climate modeling , 2012 .

[77]  Fuqing Zhang,et al.  Ensemble‐based simultaneous state and parameter estimation with MM5 , 2006 .

[78]  David A. Randall,et al.  Structure of the Madden-Julian Oscillation in the Superparameterized CAM , 2009 .

[79]  David A. Randall,et al.  Northward Propagation Mechanisms of the Boreal Summer Intraseasonal Oscillation in the ERA-Interim and SP-CCSM , 2013 .

[80]  Kerry Emanuel,et al.  Development and Evaluation of a Convection Scheme for Use in Climate Models , 1999 .

[81]  G. Stephens,et al.  The CloudSat Mission and the A-Train: A Revolutionary Approach to Observing Earth's Atmosphere , 2008, 2008 IEEE Aerospace Conference.

[82]  Eric Vanden-Eijnden,et al.  Subgrid-Scale Parameterization with Conditional Markov Chains , 2008 .

[83]  Eric Vanden-Eijnden,et al.  A computational strategy for multiscale systems with applications to Lorenz 96 model , 2004 .

[84]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[85]  P. Cox,et al.  Quantifying future climate change , 2012 .

[86]  D. Randall,et al.  Large‐Eddy Simulation of Maritime Deep Tropical Convection , 2009 .

[87]  Liang Feng,et al.  The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times , 2016, Proceedings of the National Academy of Sciences.

[88]  Ying Sun,et al.  The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes , 2017, Science.

[89]  Corinne Le Quéré,et al.  Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks , 2007, Proceedings of the National Academy of Sciences.

[90]  J. David Neelin,et al.  The Transition to Strong Convection , 2009 .

[91]  Andrew J Majda,et al.  An applied mathematics perspective on stochastic modelling for climate , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[92]  Caskey,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS I . THE BASIC EXPERIMENT , 1962 .

[93]  Georg Stadler,et al.  A Fast and Scalable Method for A-Optimal Design of Experiments for Infinite-dimensional Bayesian Nonlinear Inverse Problems , 2014, SIAM J. Sci. Comput..

[94]  E. Middleton,et al.  First observations of global and seasonal terrestrial chlorophyll fluorescence from space , 2010 .

[95]  Wojciech W. Grabowski,et al.  Towards Global Large Eddy Simulation: Super-Parameterization Revisited , 2016 .

[96]  David L. Williamson,et al.  Evaluating Parameterizations in General Circulation Models: Climate Simulation Meets Weather Prediction , 2004 .

[97]  T. Schneider,et al.  Large‐eddy simulation in an anelastic framework with closed water and entropy balances , 2015 .

[98]  E. Guilyardi,et al.  UNDERSTANDING EL NINO IN OCEAN-ATMOSPHERE GENERAL CIRCULATION MODELS : Progress and Challenges , 2008 .

[99]  Andrew M. Stuart,et al.  Evaluating Data Assimilation Algorithms , 2011, ArXiv.

[100]  T. Schneider,et al.  Numerics and subgrid‐scale modeling in large eddy simulations of stratocumulus clouds , 2017, Journal of advances in modeling earth systems.

[101]  Istvan Szunyogh,et al.  A Local Ensemble Kalman Filter for Atmospheric Data Assimilation , 2002 .

[102]  Raymond T. Pierrehumbert,et al.  Lower-Tropospheric Heat Transport in the Pacific Storm Track , 1997 .

[103]  T. Palmer,et al.  Singular Vectors, Metrics, and Adaptive Observations. , 1998 .

[104]  D. Stensrud Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models , 2007 .

[105]  S. Klein,et al.  On the spread of changes in marine low cloud cover in climate model simulations of the 21st century , 2014, Climate Dynamics.

[106]  W. Grabowski,et al.  Growth of Cloud Droplets in a Turbulent Environment , 2013 .

[107]  Virendra P. Ghate,et al.  Multiple-scale simulations of stratocumulus clouds , 2010 .

[108]  M. Webb,et al.  Origins of differences in climate sensitivity, forcing and feedback in climate models , 2013, Climate Dynamics.

[109]  Joao Teixeira,et al.  A Unified Model for Moist Convective Boundary Layers Based on a Stochastic Eddy-Diffusivity/Mass-Flux Parameterization , 2013 .

[110]  S. Bony,et al.  On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates , 2013, Climate Dynamics.

[111]  F. Woodward,et al.  Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2 , 2013, Proceedings of the National Academy of Sciences.

[112]  D. Carati,et al.  Large-eddy simulation , 2000 .

[113]  Tapio Schneider,et al.  Regional and seasonal variations of the double-ITCZ bias in CMIP5 models , 2018, Climate Dynamics.

[114]  Jean-Christophe Golaz,et al.  Cloud tuning in a coupled climate model: Impact on 20th century warming , 2013 .

[115]  Steve Fox,et al.  Orbiting Carbon Observatory-2 , 2015 .

[116]  Andrew J. Majda,et al.  Systematic Strategies for Stochastic Mode Reduction in Climate , 2003 .

[117]  D. Dee On-line Estimation of Error Covariance Parameters for Atmospheric Data Assimilation , 1995 .

[118]  Fuqing Zhang,et al.  Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation , 2016 .

[119]  Mrinal K. Sen,et al.  Error Reduction and Convergence in Climate Prediction , 2008 .

[120]  A. P. Siebesma,et al.  A Large Eddy Simulation Intercomparison Study of Shallow Cumulus Convection , 2003 .

[121]  Nadine Gobron,et al.  Observation and integrated Earth-system science: A roadmap for 2016–2025 , 2016 .

[122]  Thijs Heus,et al.  CONTINUOUS SINGLE-COLUMN MODEL EVALUATION AT A PERMANENT METEOROLOGICAL SUPERSITE , 2012 .

[123]  C. Frankenberg,et al.  OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence , 2017, Science.

[124]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[125]  Andrew Gettelman,et al.  The Art and Science of Climate Model Tuning , 2017 .

[126]  A. P. Siebesma,et al.  Weather Forecasting Using GPU-Based Large-Eddy Simulations , 2015 .

[127]  P. Cox,et al.  Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2 , 2016, Nature.

[128]  M. R. van den Broeke,et al.  A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009 , 2013, Science.

[129]  Valerio Lucarini,et al.  Multi-level Dynamical Systems: Connecting the Ruelle Response Theory and the Mori-Zwanzig Approach , 2012, Journal of Statistical Physics.

[130]  Erkki Oja,et al.  Estimation of ECHAM5 climate model closure parameters with adaptive MCMC , 2010 .

[131]  Vincent E. Larson,et al.  A PDF-Based Model for Boundary Layer Clouds. Part I: Method and Model Description , 2002 .

[132]  Z. Kuang,et al.  Responses of Shallow Cumulus Convection to Large-Scale Temperature and Moisture Perturbations: A Comparison of Large-Eddy Simulations and a Convective Parameterization Based on Stochastically Entraining Parcels , 2012 .

[133]  Pierre Friedlingstein,et al.  Carbon cycle feedbacks and future climate change , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[134]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[135]  Atul K. Jain,et al.  The global carbon budget 1959-2011 , 2012 .

[136]  A. Stuart,et al.  Ensemble Kalman methods for inverse problems , 2012, 1209.2736.

[137]  J. Randerson,et al.  Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations , 2012 .

[138]  A. Majda Challenges in Climate Science and Contemporary Applied Mathematics , 2012 .

[139]  Nancy Nichols,et al.  Estimating interchannel observation‐error correlations for IASI radiance data in the Met Office system † , 2014 .

[140]  Piotr K. Smolarkiewicz,et al.  CRCP: a cloud resolving convection parameterization for modeling the tropical convecting atmosphere , 1999 .

[141]  David A. Randall,et al.  Toward a Unified Parameterization of the Boundary Layer and Moist Convection. Part I: A New Type of Mass-Flux Model , 2001 .

[142]  David A. Randall,et al.  Toward a Unified Parameterization of the Boundary Layer and Moist Convection. Part II: Lateral Mass Exchanges and Subplume-Scale Fluxes , 2001 .

[143]  Taotao Qian,et al.  Stratocumulus Clouds in Southeastern Pacific Simulated by Eight CMIP5–CFMIP Global Climate Models , 2014 .

[144]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[145]  Franco Molteni,et al.  Sampling variability and the changing ENSO–monsoon relationship , 2016, Climate Dynamics.

[146]  D. Chung,et al.  Large-Eddy Simulation of Stratified Turbulence. Part II: Application of the Stretched-Vortex Model to the Atmospheric Boundary Layer , 2014 .

[147]  C. Bretherton,et al.  Toward low‐cloud‐permitting cloud superparameterization with explicit boundary layer turbulence , 2017 .

[148]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[149]  Scott Reckinger,et al.  Principles and advances in subgrid modelling for eddy- rich simulations , 2014 .

[150]  John F. B. Mitchell,et al.  Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models , 1990 .

[151]  Andrew J. Majda,et al.  Systematic multiscale models for deep convection on mesoscales , 2006 .

[152]  Tim N. Palmer,et al.  Using numerical weather prediction to assess climate models , 2007 .

[153]  J. Karlsson,et al.  Consequences of poor representation of Arctic sea‐ice albedo and cloud‐radiation interactions in the CMIP5 model ensemble , 2013 .

[154]  C. Frankenberg,et al.  New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity , 2011, Geophysical Research Letters.

[155]  Michael Ghil,et al.  Estimating model evidence using data assimilation , 2016, 1605.01526.

[156]  Dell,et al.  Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño , 2017, Science.

[157]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.

[158]  S. Klein,et al.  Emergent Constraints for Cloud Feedbacks , 2015, Current Climate Change Reports.

[159]  G. Stephens Cloud Feedbacks in the Climate System: A Critical Review , 2005 .

[160]  P. Cox,et al.  Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability , 2013, Nature.

[161]  A. Hall,et al.  Using the current seasonal cycle to constrain snow albedo feedback in future climate change , 2006 .

[162]  Marc Bocquet,et al.  An iterative ensemble Kalman smoother , 2014 .

[163]  Wojciech W. Grabowski,et al.  Hierarchical modelling of tropical convective systems using explicit and parametrized approaches , 2001 .

[164]  D. P. DEE,et al.  Bias and data assimilation , 2005 .

[165]  Karthik Duraisamy,et al.  A paradigm for data-driven predictive modeling using field inversion and machine learning , 2016, J. Comput. Phys..

[166]  Johannes Karlsson,et al.  Cloud radiative forcing of subtropical low level clouds in global models , 2008 .

[167]  D. Wilks Effects of stochastic parametrizations in the Lorenz '96 system , 2005 .

[168]  Vladimir M. Krasnopolsky,et al.  Using Ensemble of Neural Networks to Learn Stochastic Convection Parameterizations for Climate and Numerical Weather Prediction Models from Data Simulated by a Cloud Resolving Model , 2013, Adv. Artif. Neural Syst..

[169]  Paul D. Williams,et al.  Stochastic Parameterization: Towards a new view of Weather and Climate Models , 2015, 1510.08682.

[170]  A. Pier Siebesma,et al.  Entrainment and detrainment in cumulus convection: an overview , 2013 .

[171]  A. P. Siebesma,et al.  A Combined Eddy-Diffusivity Mass-Flux Approach for the Convective Boundary Layer , 2007 .

[172]  Tapio Schneider,et al.  The imprint of surface fluxes and transport on variations in total column carbon dioxide , 2011 .

[173]  V. Ramaswamy,et al.  Uncertainty in Model Climate Sensitivity Traced to Representations of Cumulus Precipitation Microphysics , 2016 .

[174]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[175]  S. Bony,et al.  LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection , 2013, Climate Dynamics.

[176]  Warren M. Washington,et al.  NCAR global General Circulation Model of the atmosphere , 1967 .

[177]  David Crisp,et al.  The Orbiting Carbon Observatory (OCO) mission , 2004 .

[178]  D. Randall,et al.  Beyond deadlock , 2013 .

[179]  Peter Bauer,et al.  The quiet revolution of numerical weather prediction , 2015, Nature.

[180]  C. Bretherton,et al.  Evaluation of Large-Eddy Simulations via Observations of Nocturnal Marine Stratocumulus , 2005 .

[181]  David Draper,et al.  Assessment and Propagation of Model Uncertainty , 2011 .

[182]  Paul Ginoux,et al.  CLUBB as a unified cloud parameterization: Opportunities and challenges , 2015 .

[183]  J. Kay,et al.  Global Climate Impacts of Fixing the Southern Ocean Shortwave Radiation Bias in the Community Earth System Model (CESM) , 2015 .

[184]  Tapio Schneider,et al.  Relation of the double‐ITCZ bias to the atmospheric energy budget in climate models , 2016 .

[185]  C. Schär,et al.  Heavy precipitation in a changing climate: Does short‐term summer precipitation increase faster? , 2015 .

[186]  J D Annan,et al.  Efficient estimation and ensemble generation in climate modelling , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[187]  S. Xie,et al.  Tropical Biases in CMIP5 Multimodel Ensemble: The Excessive Equatorial Pacific Cold Tongue and Double ITCZ Problems* , 2014 .

[188]  E. Fetzer,et al.  The Observed State of the Energy Budget in the Early Twenty-First Century , 2015 .

[189]  Daniel Klocke,et al.  A comparison of two numerical weather prediction methods for diagnosing fast‐physics errors in climate models , 2014 .

[190]  Andrew M. Stuart,et al.  Geometric MCMC for infinite-dimensional inverse problems , 2016, J. Comput. Phys..

[191]  Hui Wan,et al.  Short ensembles: an efficient method for discerning climate-relevant sensitivities in atmospheric general circulation models , 2014 .

[192]  Christian Jakob,et al.  An Improved Strategy for the Evaluation of Cloud Parameterizations in GCMS , 2003 .

[193]  W. Grabowski Coupling Cloud Processes with the Large-Scale Dynamics Using the Cloud-Resolving Convection Parameterization (CRCP) , 2001 .

[194]  David M. Romps,et al.  The Stochastic Parcel Model: A deterministic parameterization of stochastically entraining convection , 2016 .

[195]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .