An improved algorithm for the multidimensional moment-constrained maximum entropy problem
暂无分享,去创建一个
[1] Rafail V. Abramov,et al. A practical computational framework for the multidimensional moment-constrained maximum entropy principle , 2006 .
[2] Achiya Dax,et al. A modified Gram–Schmidt algorithm with iterative orthogonalization and column pivoting , 2000 .
[3] Ximing Wu,et al. Calculation of maximum entropy densities with application to income distribution , 2003 .
[4] Prakasa Rao. Nonparametric functional estimation , 1983 .
[5] Andrew J. Majda,et al. Quantifying Uncertainty for Non-Gaussian Ensembles in Complex Systems , 2005, SIAM J. Sci. Comput..
[6] Andrew J. Majda,et al. Quantifying predictability through information theory: small sample estimation in a non-Gaussian framework , 2005 .
[7] R. Haydock,et al. Comparison of quadrature and termination for estimating the density of states within the recursion method , 1984 .
[8] Leonard A. Smith,et al. Evaluating Probabilistic Forecasts Using Information Theory , 2002 .
[9] Andrew J. Majda,et al. Information theory and stochastics for multiscale nonlinear systems , 2005 .
[10] L. Giraud,et al. When modified Gram–Schmidt generates a well‐conditioned set of vectors , 2002 .
[11] Yin Zhang,et al. A Fast Newton Algorithm for Entropy Maximization in Phase Determination , 2001, SIAM Rev..
[12] Aldo Tagliani,et al. Hausdorff moment problem and maximum entropy: A unified approach , 1999, Appl. Math. Comput..
[13] R. Kleeman. Measuring Dynamical Prediction Utility Using Relative Entropy , 2002 .
[14] John D. McCalpin,et al. Phenomenology of the low-frequency variability in a reduced-gravity, quasigeostrophic double-gyre model , 1996 .
[15] L. Mead,et al. Maximum entropy in the problem of moments , 1984 .
[16] Andrew J. Majda,et al. A framework for predictability through relative entropy , 2002 .
[17] Gene H. Golub,et al. Matrix computations , 1983 .
[18] M. Rozložník,et al. The loss of orthogonality in the Gram-Schmidt orthogonalization process , 2005 .
[19] R. Fletcher. Practical Methods of Optimization , 1988 .
[20] John D. McCalpin. The Statistics and Sensitivity of a Double-Gyre Model: The Reduced-Gravity, Quasigeostrophic Case , 1995 .
[21] S. Griffies,et al. A Conceptual Framework for Predictability Studies , 1999 .
[22] Andrew J. Majda,et al. Information theory and predictability for low-frequency variability , 2005 .
[23] Dirk Ormoneit,et al. An efficient algorithm to compute maximum entropy densities , 1999 .
[24] R. Haydock,et al. A general terminator for the recursion method , 1985 .
[25] D. W. Scott,et al. Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .
[26] A. K. Bhattacharya,et al. Maximum entropy and the problem of moments: a stable algorithm. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[27] Aldo Tagliani,et al. Maximum entropy in the finite Stieltjes and Hamburger moment problem , 1994 .
[28] B. Silverman. Density estimation for statistics and data analysis , 1986 .
[29] E. Schmidt. Über die Auflösung linearer Gleichungen mit Unendlich vielen unbekannten , 1908 .
[30] I. Turek. A maximum-entropy approach to the density of states within the recursion method , 1988 .
[31] Jorge Nocedal,et al. A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..