DAEs in Circuit Modelling: A Survey

This paper surveys different analytical aspects of differential-algebraic models of electrical and electronic circuits. The use of DAEs in circuit modelling has increased in the last two decades, and differential-algebraic (or semistate) models play nowadays a key role in circuit simulation programs and also in the analysis of several aspects of nonlinear circuit dynamics. We discuss not only nodal systems, including MNA, but also branch-oriented and hybrid ones, as well as the models arising in other approaches to circuit analysis. Different results characterizing the index of DAE models, for both passive and active circuits, are reviewed in detail. We also present a detailed discussion of memristive devices (memristors, memcapacitors and meminductors), displaying a great potential impact in electronics in the near future, and address how to accommodate them in differential-algebraic models. Some dynamical aspects and other topics in circuit theory in which DAEs play a role, regarding e.g. model reduction, coupled problems or fault diagnosis, are discussed in less detail.

[1]  Ricardo Riaza,et al.  Nondegeneracy Conditions for Active Memristive Circuits , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[2]  T. Stern On the Equations of Nonlinear Networks , 1966 .

[3]  An-Chang Deng,et al.  Impasse points. Part I: Numerical aspects , 1989 .

[4]  Leon O. Chua,et al.  Simplest Chaotic Circuit , 2010, Int. J. Bifurc. Chaos.

[5]  A. Dervişoğlu,et al.  The Realization of the A-Matrix of a Certain Class of RLC Networks , 1966 .

[6]  M. Günther A Joint DAE/PDE Model for Interconnected Electrical Networks , 2000 .

[7]  S. Sastry,et al.  Jump behavior of circuits and systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[8]  Ricardo Riaza,et al.  Manifolds of Equilibria and Bifurcations without Parameters in Memristive Circuits , 2012, SIAM J. Appl. Math..

[9]  Leon O. Chua,et al.  MEMRISTOR CELLULAR AUTOMATA AND MEMRISTOR DISCRETE-TIME CELLULAR NEURAL NETWORKS , 2009 .

[10]  W. Rheinboldt,et al.  A general existence and uniqueness theory for implicit differential-algebraic equations , 1991, Differential and Integral Equations.

[11]  M. Günther,et al.  The DAE-index in electric circuit simulation , 1995 .

[12]  Norman Balabanian,et al.  Electrical Network Theory , 1969 .

[13]  J. L. Synge,et al.  The fundamental theorem of electrical networks , 1951 .

[14]  Fernando Corinto,et al.  Analysis of current–voltage characteristics for memristive elements in pattern recognition systems , 2012, Int. J. Circuit Theory Appl..

[15]  C. W. Gear,et al.  Simultaneous Numerical Solution of Differential-Algebraic Equations , 1971 .

[16]  R. März The index of linear differential algebraic equations with properly stated leading terms , 2002 .

[17]  Ricardo Riaza,et al.  Dynamical properties of electrical circuits with fully nonlinear memristors , 2010, 1008.2528.

[18]  Timo Reis,et al.  Circuit synthesis of passive descriptor systems—a modified nodal approach , 2010 .

[19]  M. S. Soto,et al.  Numerical analysis of DAEs from coupled circuit and semiconductor simulation , 2005 .

[20]  Ansgar Jüngel,et al.  Numerical Coupling of Electric Circuit Equations and Energy-Transport Models for Semiconductors , 2008, SIAM J. Sci. Comput..

[21]  Dimitri Jeltsema,et al.  Memristive port-Hamiltonian Systems , 2010 .

[22]  Ricardo Riaza,et al.  The tractability index of memristive circuits: branch‐oriented and tree‐based models , 2012 .

[23]  Gabriel Kron,et al.  Tensor analysis of networks , 1967 .

[24]  Ricardo Riaza,et al.  Augmented nodal matrices and normal trees , 2010, Discret. Appl. Math..

[25]  G. Reissig,et al.  Extension of the normal tree method , 1999 .

[26]  Ricardo Riaza,et al.  The hyperbolicity problem in electrical circuit theory , 2010 .

[27]  Basil G. Mertzios,et al.  Fundamental matrix of discrete singular systems , 1989 .

[28]  G. Denk,et al.  Numerical solution of stochastic differential-algebraic equations with applications to transient noise simulation of microelectronic circuits , 1998 .

[29]  C. Tischendorf,et al.  Structural analysis of electric circuits and consequences for MNA , 2000 .

[30]  Leon O. Chua,et al.  Linear and nonlinear circuits , 1987 .

[31]  Ricardo Riaza,et al.  Hybrid Analysis of Nonlinear Circuits: DAE Models with Indices Zero and One , 2013, Circuits Syst. Signal Process..

[32]  Timo Reis,et al.  Frequency Domain Methods and Decoupling of Linear Infinite Dimensional Differential Algebraic Systems , 2005 .

[33]  Ernst Hairer,et al.  The numerical solution of differential-algebraic systems by Runge-Kutta methods , 1989 .

[34]  Satoru Iwata,et al.  Index characterization of differential–algebraic equations in hybrid analysis for circuit simulation , 2010 .

[35]  W. Jäger,et al.  Mathematics – key technology for the future , 2003 .

[36]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[37]  Ricardo Riaza On the singularity-induced bifurcation theorem , 2002, IEEE Trans. Autom. Control..

[38]  L. Chua,et al.  On the implications of capacitor-only cutsets and inductor-only loops in nonlinear networks , 1979 .

[39]  Leon O. Chua,et al.  Graph-theoretic properties of dynamic nonlinear networks , 1976 .

[40]  W. Rheinboldt,et al.  A Geometric Treatment of Implicit Differential-Algebraic Equations , 1994 .

[41]  H. Boche,et al.  On singularities of autonomous implicit ordinary differential equations , 2003 .

[42]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[43]  R. Newcomb The semistate description of nonlinear time-variable circuits , 1981 .

[44]  C. Desoer,et al.  Trajectories of nonlinear RLC networks: A geometric approach , 1972 .

[45]  Andreas Bartel,et al.  Parabolic Differential-Algebraic Models in Electrical Network Design , 2005, Multiscale Model. Simul..

[46]  Andreas Bartel,et al.  A multirate W-method for electrical networks in state-space formulation , 2002 .

[47]  Caren Tischendorf,et al.  Coupled Systems of Differential Algebraic and Partial Differential Equations in Circuit and Device Simulation , 2003 .

[48]  C. Tischendorf,et al.  Mathematical Problems in Circuit Simulation , 2001 .

[49]  G. Chartrand Introductory Graph Theory , 1984 .

[50]  R. Rohrer,et al.  Automated Design of Biasing Circuits , 1971 .

[51]  B. Kent Harrison,et al.  A Discussion of Some Mathematical Techniques Used in Kron’s Method of Tearing , 1963 .

[52]  van der Arjan Schaft,et al.  Structure preserving port-Hamiltonian model reduction of electrical circuits , 2011 .

[53]  Gunther Reissig,et al.  Differential-algebraic equations and impasse points , 1996 .

[54]  L. Trajković,et al.  A generalization of Brayton-Moser's mixed potential function , 1998 .

[55]  T. Voss,et al.  Model order reduction for nonlinear differential algebraic equations in circuit simulation , 2008 .

[56]  Ricardo Riaza,et al.  Differential-Algebraic Systems: Analytical Aspects and Circuit Applications , 2008 .

[57]  Leon O. Chua,et al.  The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems , 1979 .

[58]  Andreas Bartel,et al.  A Cosimulation Framework for Multirate Time Integration of Field/Circuit Coupled Problems , 2010, IEEE Transactions on Magnetics.

[59]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[60]  Timo Reis,et al.  PABTEC: Passivity-Preserving Balanced Truncation for Electrical Circuits , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[61]  Diana Estévez Schwarz,et al.  Actual Problems of Circuit Simulation in Industry , 2003 .

[62]  Alan N. Willson,et al.  An algorithm for identifying unstable operating points using SPICE , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[63]  Michał Tadeusiewicz A method for identification of asymptotically stable equilibrium points of a certain class of dynamic circuits , 1999 .

[64]  Tatjana Stykel,et al.  Balancing-Related Model Reduction of Circuit Equations Using Topological Structure , 2011 .

[65]  Leon O. Chua,et al.  Normal forms for constrained nonlinear differential equations. II. Bifurcation , 1989 .

[66]  P. Rabier Implicit differential equations near a singular point , 1989 .

[67]  Leon O. Chua,et al.  Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors , 2009, Proceedings of the IEEE.

[68]  Michael M. Green,et al.  How to identify unstable DC operating points , 1992 .

[69]  Simone Bächle,et al.  Index Reduction by Element-Replacement for Electrical Circuits , 2007 .

[70]  Klaus Röbenack,et al.  DAE-Index Increase in Analogue Fault Simulation , 2001 .

[71]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[72]  Robert W. Newcomb,et al.  Some circuits and systems applications of semistate theory , 1989 .

[73]  E. Griepentrog,et al.  Differential-algebraic equations and their numerical treatment , 1986 .

[74]  S. Smale On the mathematical foundations of electrical circuit theory , 1972 .

[75]  Yuriy V. Pershin,et al.  Memory effects in complex materials and nanoscale systems , 2010, 1011.3053.

[76]  Michał Tadeusiewicz,et al.  Global and local stability of circuits containing MOS transistors , 2001 .

[77]  Timo Reis,et al.  Lyapunov Balancing for Passivity-Preserving Model Reduction of RC Circuits , 2011, SIAM J. Appl. Dyn. Syst..

[78]  Ricardo Riaza,et al.  Graph-Theoretic Characterization of bifurcation Phenomena in Electrical Circuit Dynamics , 2010, Int. J. Bifurc. Chaos.

[79]  R. Freund Krylov-subspace methods for reduced-order modeling in circuit simulation , 2000 .

[80]  A. Jüngel,et al.  SIMULATION OF THERMAL EFFECTS IN OPTOELECTRONIC DEVICES USING COUPLED ENERGY-TRANSPORT AND CIRCUIT MODELS , 2008 .

[81]  A. M. Sommariva State-space equations of regular and strictly topologically degenerate linear lumped time-invariant networks: the implicit tree-tableau method , 2001, ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483).

[82]  L. Chua Dynamic nonlinear networks: State-of-the-art , 1980 .

[83]  P. Rentrop,et al.  Modeling, Simulation, and Optimization of Integrated Circuits , 2003 .

[84]  Uwe Feldmann,et al.  Finding Beneficial DAE Structures in Circuit Simulation , 2003 .

[85]  Satoru Iwata,et al.  Index minimization of differential-algebraic equations in hybrid analysis for circuit simulation , 2010, Math. Program..

[86]  E. Kuh,et al.  The state-variable approach to network analysis , 1965 .

[87]  Michael M. Green,et al.  (Almost) half of any circuit's operating points are unstable , 1994 .

[88]  R. März Differential algebraic systems anew , 2002 .

[89]  R. März Differential Algebraic Systems with Properly Stated Leading Term and MNA Equations , 2003 .

[90]  B. Andrásfai Graph Theory: Flows, Matrices , 1991 .

[91]  Jr. F.H. Branin Computer methods of network analysis , 1967 .

[92]  Satoru Iwata,et al.  Tractability index of hybrid equations for circuit simulation , 2011, Math. Comput..

[93]  RICARDO RIAZA,et al.  Explicit ODE Reduction of Memristive Systems , 2011, Int. J. Bifurc. Chaos.

[94]  P. Bryant,et al.  Solutions of singular constrained differential equations: A generalization of circuits containing capacitor-only loops and inductor-only cutsets , 1984 .

[95]  Werner C. Rheinboldt,et al.  On the computation of impasse points of quasi-linear differential-algebraic equations , 1994 .

[96]  Ricardo Riaza,et al.  Qualitative features of matrix pencils and DAEs arising in circuit dynamics , 2007 .

[97]  Kurt Schlacher,et al.  Advanced dynamics and control of structures and machines , 2004 .

[98]  Leon O. Chua,et al.  Impasse points. Part II: Analytical aspects , 1989 .

[99]  René Lamour,et al.  The computation of consistent initial values for nonlinear index-2 differential–algebraic equations , 2004, Numerical Algorithms.

[100]  Ricardo Riaza,et al.  A matrix pencil approach to the local stability analysis of non‐linear circuits , 2004, Int. J. Circuit Theory Appl..

[101]  Ricardo Riaza Singularity-induced bifurcations in lumped circuits , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[102]  Alper Demir,et al.  Floquet theory and non‐linear perturbation analysis for oscillators with differential‐algebraic equations , 2000 .

[103]  Andreas Bartel,et al.  Elliptic Partial Differential-Algebraic Multiphysics Models in Electrical Network Design , 2003 .

[104]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[105]  Martin Hasler,et al.  Nonlinear Circuits , 1986 .

[106]  Alejandro D. Domínguez-García,et al.  Detection of impulsive effects in switched DAEs with applications to power electronics reliability analysis , 2010, 49th IEEE Conference on Decision and Control (CDC).

[107]  Sebastian Reich,et al.  On an existence and uniqueness theory for nonlinear differential-algebraic equations , 1991 .

[108]  R. Winkler Stochastic differential algebraic equations of index 1 and applications in circuit simulation , 2003 .

[109]  G. Reissig The index of the standard circuit equations of passive RLCTG-networks does not exceed 2 , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[110]  Diana Estévez Schwarz A step-by-step approach to compute a consistent initialization for the MNA , 2002, Int. J. Circuit Theory Appl..

[111]  Falk Ebert,et al.  On Partitioned Simulation of Electrical Circuits using Dynamic Iteration Methods , 2008 .

[112]  W. Mathis,et al.  A Hamiltonian formulation for complete nonlinear RLC-networks , 1997 .

[113]  K. Eshraghian,et al.  The fourth element: characteristics, modelling and electromagnetic theory of the memristor , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[114]  Marc Fosseprez,et al.  Non-linear Circuits: Qualitative Analysis of Non-linear, Non-reciprocal Circuits , 1992 .

[115]  Roswitha März,et al.  Numerical methods for differential algebraic equations , 1992, Acta Numerica.

[116]  L. Chua Memristor-The missing circuit element , 1971 .

[117]  Marcelo Messias,et al.  Hopf bifurcation from Lines of Equilibria without Parameters in Memristor oscillators , 2010, Int. J. Bifurc. Chaos.

[118]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[119]  Christian Penski,et al.  A numerical scheme for highly oscillatory DAEs and its application to circuit simulation , 1998, Numerical Algorithms.

[120]  Diana Estévez Schwarz,et al.  Consistent initialization for index-2 differential algebraic equations and its application to circuit simulation , 2000 .

[121]  Sebastian Schöps,et al.  Dynamic Iteration for Coupled Problems of Electric Circuits and Distributed Devices , 2013, SIAM J. Sci. Comput..

[122]  G. Denk,et al.  Integration schemes for highly oscillatory DAEs with applications to circuit simulation , 1997 .

[123]  Dalibor Biolek,et al.  SPICE modeling of memristive, memcapacitative and meminductive systems , 2009, 2009 European Conference on Circuit Theory and Design.

[124]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[125]  T. Bashkow,et al.  The A Matrix, New Network Description , 1957 .

[126]  ter Ejw Jan Maten,et al.  Compound BDF multirate transient analysis applied to circuit simulation , 2006 .

[127]  B. C. Haggman,et al.  Geometric properties of nonlinear networks containing capacitor-only cutsets and/or inductor-only loops. Part I: Conservation laws , 1986 .

[128]  Geometric properties of nonlinear networks containing capacitor-only cutsets and/or inductor-only loops. Part II: Symmetries , 1986 .

[129]  Ricardo Riaza,et al.  Semistate models of electrical circuits including memristors , 2011, Int. J. Circuit Theory Appl..

[130]  J. K. Moser,et al.  A theory of nonlinear networks. I , 1964 .

[131]  Nick van der Meijs,et al.  Model Order Reduction of Large RC Circuits , 2008 .

[132]  C. Penski,et al.  A new numerical method for SDEs and its application in circuit simulation , 2000 .

[133]  Massimiliano Di Ventra,et al.  Practical Approach to Programmable Analog Circuits With Memristors , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[134]  Timo Reis,et al.  Model Reduction for a Class of Nonlinear Electrical Circuits by Reduction of Linear Subcircuits , 2010 .

[135]  Albert E. Ruehli,et al.  The modified nodal approach to network analysis , 1975 .

[136]  Caren Tischendorf,et al.  Consistent Initialization for Coupled Circuit-Device Simulation , 2010 .

[137]  Caren Tischendorf,et al.  Recent Results in Solving Index-2 Differential-Algebraic Equations in Circuit Simulation , 1997, SIAM J. Sci. Comput..

[138]  P. Bryant,et al.  The Explicit Form of Bashkow's A Matrix , 1962 .

[139]  Roswitha März,et al.  Basic Properties of Some Differential-Algebraic Equations , 1989 .

[140]  Bharathwaj Muthuswamy,et al.  Implementing Memristor Based Chaotic Circuits , 2010, Int. J. Bifurc. Chaos.

[141]  Fabrizio Durante,et al.  Copula Theory and Its Applications , 2010 .

[142]  Robert K. Brayton,et al.  The Sparse Tableau Approach to Network Analysis and Design , 1971 .

[143]  René Lamour,et al.  Differential-Algebraic Equations: A Projector Based Analysis , 2013 .

[144]  Michael Günther,et al.  A PDAE Model for Interconnected Linear RLC Networks , 2001 .

[145]  P. Bryant,et al.  The order of complexity of electrical networks , 1959 .

[146]  Michael Günther,et al.  Preconditioned Dynamic Iteration for Coupled Differential-Algebraic Systems , 2001 .

[147]  Antonino M. Sommariva,et al.  State‐space equations of regular and strictly topologically degenerate linear lumped time‐invariant networks: the multiport method , 2001, Int. J. Circuit Theory Appl..

[148]  Ricardo Riaza,et al.  Non‐linear circuit modelling via nodal methods , 2005, Int. J. Circuit Theory Appl..

[149]  S. Reich On a geometrical interpretation of differential-algebraic equations , 1990 .

[150]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[151]  A. Schaft Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems , 2004 .

[152]  Sebastian Schöps,et al.  Structural analysis of electrical circuits including magnetoquasistatic devices , 2011 .

[153]  S. Campbell Singular systems of differential equations II , 1980 .

[154]  W. Rheinboldt Differential-algebraic systems as differential equations on manifolds , 1984 .

[155]  Ricardo Riaza,et al.  Tree-based characterization of low index circuit configurations without passivity restrictions , 2008 .

[156]  Leon O. Chua,et al.  Memristor Hamiltonian Circuits , 2011, Int. J. Bifurc. Chaos.

[157]  Caren Tischendorf,et al.  PDAE models of integrated circuits and index analysis , 2007 .

[158]  H. V. D. Vorst,et al.  Model Order Reduction: Theory, Research Aspects and Applications , 2008 .

[159]  F. R. Gantmakher The Theory of Matrices , 1984 .

[160]  Ricardo Riaza,et al.  Structural characterization of classical and memristive circuits with purely imaginary eigenvalues , 2013, Int. J. Circuit Theory Appl..

[161]  Ricardo Riaza,et al.  Cyclic matrices of weighted digraphs , 2012, Discret. Appl. Math..

[162]  Ricardo Riaza,et al.  First Order Mem-Circuits: Modeling, Nonlinear Oscillations and Bifurcations , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[163]  Antonio DeSimone,et al.  RELAXATION OF SOME TRANSVERSALLY ISOTROPIC ENERGIES AND APPLICATIONS TO SMECTIC A ELASTOMERS , 2008 .

[164]  A. Dervişoğlu Bashkow's 'A Matrix for Active RLC Networks' , 1964 .

[165]  Bratislav Tasic,et al.  Error analysis of BDF compound-fast multirate method for differential-algebraic equations , 2006 .

[166]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[167]  David P. Brown Derivative-explicit differential equations for RLC graphs☆ , 1963 .

[168]  Diana Estévez Schwarz,et al.  Consistent initialization for DAEs in Hessenberg form , 2009, Numerical Algorithms.

[169]  S. Natarajan,et al.  A systematic method for obtaining state equations using MNA , 1991 .

[170]  Michael Günther,et al.  Modelling and discretization of circuit problems , 2005 .

[171]  M.L. Liou,et al.  Computer-aided analysis of electronic circuits: Algorithms and computational techniques , 1977, Proceedings of the IEEE.

[172]  Massimiliano Di Ventra,et al.  Neuromorphic, Digital, and Quantum Computation With Memory Circuit Elements , 2010, Proceedings of the IEEE.

[173]  Michael Günther,et al.  A charge oriented mixed multirate method for a special class of index-1 network equations in chip design , 2005 .

[174]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[175]  F. Ebert,et al.  A Structure Preserving Index Reduction Method For MNA , 2006 .

[176]  F. Takens Constrained equations; a study of implicit differential equations and their discontinuous solutions , 1976 .

[177]  Convergence analysis of a partial differential algebraic system from coupling a semiconductor model to a circuit model , 2011 .

[178]  Robert W. Newcomb,et al.  Semistate theory and analog VLSI design , 2002 .

[179]  H. Watanabe,et al.  State-Variable Analysis of RLC Networks Containing Nonlinear Coupling Elements , 1969 .

[180]  Bharathwaj Muthuswamy,et al.  Memristor-Based Chaotic Circuits , 2009 .

[181]  L. Chua,et al.  A qualitative analysis of the behavior of dynamic nonlinear networks: Stability of autonomous networks , 1976 .

[182]  Qiang Xu,et al.  A Simple memristor Chaotic Circuit with Complex Dynamics , 2011, Int. J. Bifurc. Chaos.

[183]  S. Campbell Singular Systems of Differential Equations , 1980 .

[184]  E. Jan W. ter Maten,et al.  Model Reduction for Circuit Simulation , 2011 .

[185]  L. Chua,et al.  Normal forms for constrained nonlinear differential equations. I. Theory , 1988 .

[186]  J. Roth An application of algebraic topology: Kron’s method of tearing , 1959 .

[187]  Ansgar Jüngel,et al.  Self-heating in a coupled thermo-electric circuit-device model , 2011 .

[188]  Ricardo Riaza,et al.  On singular equilibria of index-1 DAEs , 2000 .

[189]  W. Rheinboldt,et al.  Theoretical and numerical analysis of differential-algebraic equations , 2002 .

[190]  L. Foulds,et al.  Graph Theory Applications , 1991 .

[191]  Caren Tischendorf,et al.  Topological index‐calculation of DAEs in circuit simulation , 1998 .

[192]  Werner C. Rheinboldt,et al.  On Impasse Points of Quasilinear Differential Algebraic Equations , 1994 .

[193]  Roland W. Freund,et al.  The SPRIM Algorithm for Structure-Preserving Order Reduction of General RCL Circuits , 2011 .

[194]  R.M.M. Mattheij,et al.  Adjoint transient sensitivity analysis in circuit simulation , 2007 .