Lineage switching in MLL-AF 4 leukaemias 1 Epigenetic regulator genes direct lineage switching in MLL-AF 4 leukaemia 1

[1]  T. Milne,et al.  A KMT2A-AFF1 gene regulatory network highlights the role of core transcription factors and reveals the regulatory logic of key downstream target genes , 2021, Genome research.

[2]  Salam A. Assi,et al.  RUNX1/RUNX1T1 mediates alternative splicing and reorganises the transcriptional landscape in leukemia , 2021, Nature Communications.

[3]  T. Pons,et al.  Role of POLE and POLD1 in familial cancer , 2020, Genetics in Medicine.

[4]  A. Zelenetz,et al.  Acute lymphoblastic leukemia. , 2019, Journal of the National Comprehensive Cancer Network : JNCCN.

[5]  Benjamin J. Raphael,et al.  Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. , 2019, Blood.

[6]  A. Melnick,et al.  MTA2/NuRD Regulates B Cell Development and Cooperates with OCA-B in Controlling the Pre-B to Immature B Cell Transition , 2019, Cell reports.

[7]  A. Feeney,et al.  CHD4 is essential for transcriptional repression and lineage progression in B lymphopoiesis , 2019, Proceedings of the National Academy of Sciences.

[8]  M. Sadelain,et al.  CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape , 2019, Nature.

[9]  Damian Szklarczyk,et al.  STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets , 2018, Nucleic Acids Res..

[10]  Hans Bitter,et al.  Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia , 2018, Nature Medicine.

[11]  Jason D. Buenrostro,et al.  Neutralizing Gatad2a-Chd4-Mbd3/NuRD Complex Facilitates Deterministic Induction of Naive Pluripotency. , 2018, Cell stem cell.

[12]  I. Varela,et al.  Unravelling the Cellular Origin and Clinical Prognostic Markers of Infant B-Cell Acute Lymphoblastic Leukemia Using Genome-Wide Analysis , 2018, Experimental Hematology.

[13]  K. Ottersbach,et al.  The fetal liver lymphoid-primed multipotent progenitor provides the prerequisites for the initiation of t(4;11) MLL-AF4 infant leukemia , 2018, Haematologica.

[14]  H. Qian,et al.  The chromatin-remodeling factor CHD4 is required for maintenance of childhood acute myeloid leukemia , 2018, Haematologica.

[15]  Hamid Bolouri,et al.  The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions , 2017, Nature Medicine.

[16]  A. Schambach,et al.  The non-coding RNA landscape of human hematopoiesis and leukemia , 2017, Nature Communications.

[17]  E. Clappier,et al.  The MLL recombinome of acute leukemias in 2017 , 2017, Leukemia.

[18]  Geet Duggal,et al.  Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference , 2017, Nature Methods.

[19]  M. D. Den Boer,et al.  Conserved IKAROS-regulated genes associated with B-progenitor acute lymphoblastic leukemia outcome , 2017, The Journal of experimental medicine.

[20]  M. Konopleva,et al.  MLL-AF4 Spreading Identifies Binding Sites that Are Distinct from Super-Enhancers and that Govern Sensitivity to DOT1L Inhibition in Leukemia , 2017, Cell reports.

[21]  Salam A. Assi,et al.  Instructive Role of MLL-Fusion Proteins Revealed by a Model of t(4;11) Pro-B Acute Lymphoblastic Leukemia. , 2016, Cancer cell.

[22]  Hans Clevers,et al.  Tissue-specific mutation accumulation in human adult stem cells during life , 2016, Nature.

[23]  Tomas W. Fitzgerald,et al.  Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing , 2016, Nature Genetics.

[24]  R. Mcmasters,et al.  Lineage Switch in MLL‐Rearranged Infant Leukemia Following CD19‐Directed Therapy , 2016, Pediatric blood & cancer.

[25]  D. Maloney,et al.  Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. , 2016, Blood.

[26]  Xiaoyu Chen,et al.  Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications , 2016, Bioinform..

[27]  M. Robinson,et al.  Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences , 2015, F1000Research.

[28]  David Allman,et al.  Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. , 2015, Cancer discovery.

[29]  Salam A. Assi,et al.  Wellington-bootstrap: differential DNase-seq footprinting identifies cell-type determining transcription factors , 2015, BMC Genomics.

[30]  M. Stratton,et al.  Clock-like mutational processes in human somatic cells , 2015, Nature Genetics.

[31]  C. Sander,et al.  Somatic POLE mutations cause an ultramutated giant cell high-grade glioma subtype with better prognosis. , 2015, Neuro-oncology.

[32]  S. Grant,et al.  Depletion of the chromatin remodeler CHD4 sensitizes AML blasts to genotoxic agents and reduces tumor formation. , 2015, Blood.

[33]  B. Ycart,et al.  A six gene expression signature defines aggressive subtypes and predicts outcome in childhood and adult acute lymphoblastic leukemia , 2015, Oncotarget.

[34]  Cheng Cheng,et al.  The landscape of somatic mutations in Infant MLL rearranged acute lymphoblastic leukemias , 2015, Nature Genetics.

[35]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[36]  Randy J. Read,et al.  Transcriptional diversity during lineage commitment of human blood progenitors , 2014, Science.

[37]  Salam A. Assi,et al.  Identification of a Dynamic Core Transcriptional Network in t(8;21) AML that Regulates Differentiation Block and Self-Renewal , 2014, Cell reports.

[38]  S. Dudoit,et al.  Normalization of RNA-seq data using factor analysis of control genes or samples , 2014, Nature Biotechnology.

[39]  R. Houlston,et al.  The silent mutational landscape of infant MLL‐AF4 pro‐B acute lymphoblastic leukemia , 2013, Genes, chromosomes & cancer.

[40]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[41]  Jason Piper,et al.  Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data , 2013, Nucleic acids research.

[42]  P. Cramer,et al.  Structures of RNA polymerase II complexes with Bye1, a chromatin-binding PHF3/DIDO homologue , 2013, Proceedings of the National Academy of Sciences.

[43]  Semyon Kruglyak,et al.  Isaac: ultra-fast whole-genome secondary analysis on Illumina sequencing platforms , 2013, Bioinform..

[44]  I. Tomlinson,et al.  DNA polymerase ɛ and δ exonuclease domain mutations in endometrial cancer , 2013, Human molecular genetics.

[45]  S. Sugano,et al.  Functionally distinct Gata3/Chd4 complexes coordinately establish T helper 2 (Th2) cell identity , 2013, Proceedings of the National Academy of Sciences.

[46]  E. Carasevici,et al.  Infant acute leukemia with lineage switch at relapse expressing a novel t(4;11)(q21;q23) MLL-AF4 fusion transcript , 2013 .

[47]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[48]  Thomas A. Milne,et al.  RUNX1 Is a Key Target in t(4;11) Leukemias that Contributes to Gene Activation through an AF4-MLL Complex Interaction , 2013, Cell reports.

[49]  Paul A. Northcott,et al.  DNA methylation profiling of medulloblastoma allows robust subclassification and improved outcome prediction using formalin-fixed biopsies , 2013, Acta Neuropathologica.

[50]  M. D. Den Boer,et al.  Acute B lymphoblastic leukaemia-propagating cells are present at high frequency in diverse lymphoblast populations , 2012, EMBO molecular medicine.

[51]  A. Bernasconi,et al.  Lineage switch in childhood acute leukemia: An unusual event with poor outcome , 2012, American journal of hematology.

[52]  Wendy S. W. Wong,et al.  Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs , 2012, Bioinform..

[53]  Chao-jun Zhang,et al.  Analysis of the copy number of exogenous genes in transgenic cotton using real-time quantitative PCR and the 2-△△CT method , 2012 .

[54]  J. Seavitt,et al.  Harnessing of the Nucleosome Remodeling Deacetylase complex controls lymphocyte development and prevents leukemogenesis , 2011, Nature Immunology.

[55]  A. Gonzalez-Perez,et al.  Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. , 2011, American journal of human genetics.

[56]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[57]  Salam A. Assi,et al.  Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells. , 2011, Blood.

[58]  N. Friedman,et al.  Densely Interconnected Transcriptional Circuits Control Cell States in Human Hematopoiesis , 2011, Cell.

[59]  Ash A. Alizadeh,et al.  Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. , 2010, JAMA.

[60]  Kevin K Dobbin,et al.  Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. , 2010, Blood.

[61]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[62]  T. Brümmendorf,et al.  Leukemic fusion genes MLL/AF4 and AML1/MTG8 support leukemic self-renewal by controlling expression of the telomerase subunit TERT , 2010, Leukemia.

[63]  S. Richards,et al.  Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: results from the UK Medical Research Council ALL97/99 randomised trial. , 2010, The Lancet. Oncology.

[64]  M. D. Boer,et al.  Bimodal distribution of genomic MLL breakpoints in infant acute lymphoblastic leukemia treatment , 2010, Leukemia.

[65]  Giuseppe Basso,et al.  MLL rearrangements in pediatric acute lymphoblastic and myeloblastic leukemias: MLL specific and lineage specific signatures , 2009, BMC Medical Genomics.

[66]  Jiangwen Zhang,et al.  Genome-wide lineage-specific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells. , 2009, Immunity.

[67]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[68]  Howard Y. Chang,et al.  Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. , 2009, Cell stem cell.

[69]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[70]  Juan F. García,et al.  Comparative genome profiling across subtypes of low-grade B-cell lymphoma identifies type-specific and common aberrations that target genes with a role in B-cell neoplasia , 2008, Haematologica.

[71]  Jiangwen Zhang,et al.  The role of the chromatin remodeler Mi-2beta in hematopoietic stem cell self-renewal and multilineage differentiation. , 2008, Genes & development.

[72]  E. Bertolino,et al.  Transcription factor EBF restricts alternative lineage options and promotes B cell fate commitment independently of Pax5 , 2008, Nature Immunology.

[73]  J. Mesirov,et al.  Metagene projection for cross-platform, cross-species characterization of global transcriptional states , 2007, Proceedings of the National Academy of Sciences.

[74]  M. D. Boer,et al.  The MLL recombinome of acute leukemias , 2006, Leukemia.

[75]  S. Ng,et al.  Early hematopoietic lineage restrictions directed by Ikaros , 2006, Nature Immunology.

[76]  T. Dingermann,et al.  A LDI-PCR Based Method Allows the Identification of Any MLL Rearrangement. , 2005 .

[77]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[78]  G. Bhagat,et al.  Congenital MLL-positive B-cell acute lymphoblastic leukemia (B-ALL) switched lineage at relapse to acute myelocytic leukemia (AML) with persistent t(4;11) and t(1;6) translocations and JH gene rearrangement , 2005, Leukemia & lymphoma.

[79]  Alok J. Saldanha,et al.  Java Treeview - extensible visualization of microarray data , 2004, Bioinform..

[80]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[81]  Pablo Tamayo,et al.  Metagenes and molecular pattern discovery using matrix factorization , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[82]  M Hummel,et al.  Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: Report of the BIOMED-2 Concerted Action BMH4-CT98-3936 , 2003, Leukemia.

[83]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[84]  M. Cleary,et al.  Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. , 2003, Genes & development.

[85]  H. Erdjument-Bromage,et al.  An Ikaros-Containing Chromatin-Remodeling Complex in Adult-Type Erythroid Cells , 2000, Molecular and Cellular Biology.

[86]  Stephen L. Nutt,et al.  Commitment to the B-lymphoid lineage depends on the transcription factor Pax5 , 1999, Nature.

[87]  R. Kingston,et al.  Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. , 1999, Immunity.

[88]  R. Hardy,et al.  Commitment to the B Lymphoid Lineage Occurs before DH-JH Recombination , 1999, The Journal of experimental medicine.

[89]  T. Graf,et al.  PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. , 1998, Genes & development.

[90]  M. Busslinger,et al.  Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. , 1997, Genes & development.

[91]  D. Tenen,et al.  PU.1 (Spi-1) and C/EBP alpha regulate expression of the granulocyte-macrophage colony-stimulating factor receptor alpha gene , 1995, Molecular and cellular biology.

[92]  D Rizopoulos,et al.  Prognostic value of rare IKZF1 deletion in childhood B-cell precursor acute lymphoblastic leukemia: an international collaborative study , 2016, Leukemia.

[93]  M. Seto,et al.  Lentiviral marking of patient-derived acute lymphoblastic leukaemic cells allows in vivo tracking of disease progression , 2013, Leukemia.

[94]  J. Downing,et al.  Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. , 2010, Blood.

[95]  M. Krzywinski,et al.  New insights to the MLL recombinome of acute leukemias , 2009, Leukemia.

[96]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..

[97]  R. Arceci A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial , 2008 .

[98]  L. Kiemeney,et al.  Analysis of Relative Gene Expression Data Using Real-time Quantita- Tive Pcr and the 2 Preanalytic Error Tracking in a Laboratory Medicine Department: Results of a 1-year Experience , 2006 .

[99]  G. Basso,et al.  Two consecutive immunophenotypic switches in a child with MLL-rearranged acute lymphoblastic leukemia. , 2006, Haematologica.