Domination number and Laplacian eigenvalue distribution

Let m G ( I ) denote the number of Laplacian eigenvalues of a graph G in an interval I . Our main result is that for graphs having domination number γ , m G 0 , 1 ) ? γ , improving existing bounds in the literature. For many graphs, m G 0 , 1 ) = γ , or m G 0 , 1 ) = γ - 1 .

[1]  Yoshimi Egawa,et al.  Vertex-disjoint claws in graphs , 1999, Discret. Math..

[2]  P. Hansen,et al.  A sharp upper bound on algebraic connectivity using domination number , 2009 .

[3]  Bruce A. Reed Paths, Stars and the Number Three , 1996, Comb. Probab. Comput..

[4]  V. Nikiforov Bounds on graph eigenvalues I , 2006, math/0602027.

[5]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[6]  Guihai Yu,et al.  Minimizing the Laplacian eigenvalues for trees with given domination number , 2006 .

[7]  Jan Har A note on Laplacian eigenvalues and domination , 2014 .

[8]  Ji-Ming Guo The kth Laplacian eigenvalue of a tree , 2007, J. Graph Theory.

[9]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[10]  V. Sunder,et al.  The Laplacian spectrum of a graph , 1990 .

[11]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[12]  Béla Bollobás,et al.  Graph-theoretic parameters concerning domination, independence, and irredundance , 1979, J. Graph Theory.

[13]  Tom Roby,et al.  THE LATTICE OF THRESHOLD GRAPHS , 2005 .

[14]  Russell Merris The number of eigenvalues greater than two in the Laplacian spectrum of a graph , 1991 .

[15]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[16]  Bo Zhou,et al.  ON THE NUMBER OF LAPLACIAN EIGENVALUES OF TREES SMALLER THAN TWO , 2015 .

[17]  Bo Zhou,et al.  Laplacian and signless Laplacian spectral radii of graphs with fixed domination number , 2013, 1310.7308.

[18]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[19]  Bojan Mohar,et al.  Laplace eigenvalues of graphs - a survey , 1992, Discret. Math..

[20]  O. Ore Theory of Graphs , 1962 .

[21]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[22]  J. M. Guo,et al.  On the distribution of Laplacian eigenvalues of a graph , 2011 .

[23]  F. Bruce Shepherd,et al.  Domination in graphs with minimum degree two , 1989, J. Graph Theory.

[24]  C. Brand,et al.  Eigenvalues and domination in graphs , 1996 .

[25]  Vilmar Trevisan,et al.  On the distribution of Laplacian eigenvalues of trees , 2013, Discret. Math..