How sulphate-reducing microorganisms cope with stress: lessons from systems biology

[1]  Jizhong Zhou,et al.  Functional gene diversity of soil microbial communities from five oil-contaminated fields in China , 2011, The ISME Journal.

[2]  Ching Leang,et al.  Direct Exchange of Electrons Within Aggregates of an Evolved Syntrophic Coculture of Anaerobic Bacteria , 2010, Science.

[3]  P. D’haeseleer,et al.  Deep-Sea Oil Plume Enriches Indigenous Oil-Degrading Bacteria , 2010, Science.

[4]  Ye Deng,et al.  Functional Molecular Ecological Networks , 2010, mBio.

[5]  Christopher L. Hemme,et al.  Hydrogen peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough. , 2010, Environmental microbiology.

[6]  T. Gaasterland,et al.  The genome of the Gram-positive metal- and sulfate-reducing bacterium Desulfotomaculum reducens strain MI-1. , 2010, Environmental microbiology.

[7]  Jizhong Zhou,et al.  Microbial Communities and Functional Genes Associated with Soil Arsenic Contamination and the Rhizosphere of the Arsenic-Hyperaccumulating Plant Pteris vittata L , 2010, Applied and Environmental Microbiology.

[8]  Jizhong Zhou,et al.  Significant Association between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial Communities as Revealed by a Combined Massively Parallel Sequencing-Indicator Species Approach , 2010, Applied and Environmental Microbiology.

[9]  Christopher L. Hemme,et al.  Impact of elevated nitrate on sulfate-reducing bacteria: a comparative Study of Desulfovibrio vulgaris , 2010, The ISME Journal.

[10]  Judy D. Wall,et al.  Effect of the Deletion of qmoABC and the Promoter-Distal Gene Encoding a Hypothetical Protein on Sulfate Reduction in Desulfovibrio vulgaris Hildenborough , 2010, Applied and Environmental Microbiology.

[11]  Yongfei Hu,et al.  Construction and Preliminary Analysis of a Deep-Sea Sediment Metagenomic Fosmid Library from Qiongdongnan Basin, South China Sea , 2010, Marine Biotechnology.

[12]  I. Pereira,et al.  The Qrc Membrane Complex, Related to the Alternative Complex III, Is a Menaquinone Reductase Involved in Sulfate Respiration* , 2010, The Journal of Biological Chemistry.

[13]  Tommy J Phelps,et al.  Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments , 2010, BMC Microbiology.

[14]  J. Banfield,et al.  Diversity of Dissimilatory Sulfite Reductase Genes (dsrAB) in a Salt Marsh Impacted by Long-Term Acid Mine Drainage , 2010, Applied and Environmental Microbiology.

[15]  J. Selbig,et al.  Metabolomic and transcriptomic stress response of Escherichia coli , 2010, Molecular systems biology.

[16]  M. Engelhard,et al.  Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota , 2010, Microbial Ecology.

[17]  Christopher L. Hemme,et al.  GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity , 2010, The ISME Journal.

[18]  Michael Y. Galperin,et al.  Diversity of structure and function of response regulator output domains. , 2010, Current opinion in microbiology.

[19]  Michael Y. Galperin,et al.  Interplay of heritage and habitat in the distribution of bacterial signal transduction systems. , 2010, Molecular bioSystems.

[20]  Jizhong Zhou,et al.  Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation , 2010, The ISME Journal.

[21]  Ye Deng,et al.  Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community , 2010, The ISME Journal.

[22]  David A. Stahl,et al.  Rapid evolution of stability and productivity at the origin of a microbial mutualism , 2010, Proceedings of the National Academy of Sciences.

[23]  Katherine H. Huang,et al.  Global Transcriptional, Physiological, and Metabolite Analyses of the Responses of Desulfovibrio vulgaris Hildenborough to Salt Adaptation , 2009, Applied and Environmental Microbiology.

[24]  Lynne A. Goodwin,et al.  Complete genome sequence of Desulfotomaculum acetoxidans type strain (5575T) , 2009, Standards in genomic sciences.

[25]  Ye Deng,et al.  Microarray-based analysis of microbial functional diversity along an oil contamination gradient in oil field. , 2009, FEMS microbiology ecology.

[26]  Ye Deng,et al.  GeoChip-based analysis of functional microbial communities during the reoxidation of a bioreduced uranium-contaminated aquifer. , 2009, Environmental microbiology.

[27]  Satoshi Okabe,et al.  Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system , 2018 .

[28]  H. Nakazawa,et al.  Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria. , 2009, Genome research.

[29]  M. Shatsky,et al.  Survey of large protein complexes in D. vulgaris reveals great structural diversity , 2009, Proceedings of the National Academy of Sciences.

[30]  Alfons J. M. Stams,et al.  Electron transfer in syntrophic communities of anaerobic bacteria and archaea , 2009, Nature Reviews Microbiology.

[31]  Y. Pilpel,et al.  Adaptive prediction of environmental changes by microorganisms , 2009, Nature.

[32]  A. Arkin,et al.  The Electron Transfer System of Syntrophically Grown Desulfovibrio vulgaris , 2009, Journal of bacteriology.

[33]  C. Marx Getting in Touch with Your Friends , 2009, Science.

[34]  R. Amann,et al.  Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide , 2009, Environmental microbiology.

[35]  Zhili He,et al.  Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels. , 2009, Environmental science & technology.

[36]  Jizhong Zhou,et al.  GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent , 2009, Proceedings of the National Academy of Sciences.

[37]  Alyssa M. Redding,et al.  Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation , 2009, Nucleic acids research.

[38]  Jizhong Zhou Predictive microbial ecology , 2009, Microbial biotechnology.

[39]  K. Nelson,et al.  Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases , 2009, Proceedings of the National Academy of Sciences.

[40]  J. Einasto Dark Matter , 2011, Brazilian Journal of Physics.

[41]  J. Eisen,et al.  A simple, fast, and accurate method of phylogenomic inference , 2008, Genome Biology.

[42]  Dylan Chivian,et al.  Environmental Genomics Reveals a Single-Species Ecosystem Deep Within Earth , 2008, Science.

[43]  Jizhong Zhou,et al.  Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts , 2008, The ISME Journal.

[44]  Stephan C Schuster,et al.  Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment , 2008, Proceedings of the National Academy of Sciences.

[45]  Charles T. Garten,et al.  Spatial scaling of functional gene diversity across various microbial taxa , 2008, Proceedings of the National Academy of Sciences.

[46]  P. Bodelier,et al.  Biogeography of sulfate-reducing prokaryotes in river floodplains. , 2008, FEMS microbiology ecology.

[47]  A. Stams,et al.  The ecology and biotechnology of sulphate-reducing bacteria , 2008, Nature Reviews Microbiology.

[48]  Victoria J. Orphan,et al.  Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics , 2008, Proceedings of the National Academy of Sciences.

[49]  Jizhong Zhou,et al.  Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis , 2008, Antonie van Leeuwenhoek.

[50]  P. Kitanidis,et al.  Growth and cometabolic reduction kinetics of a uranium‐ and sulfate‐reducing Desulfovibrio/Clostridia mixed culture: Temperature effects , 2008, Biotechnology and bioengineering.

[51]  D. Watson,et al.  Functional Diversity and Electron Donor Dependence of Microbial Populations Capable of U(VI) Reduction in Radionuclide-Contaminated Subsurface Sediments , 2008, Applied and Environmental Microbiology.

[52]  Jizhong Zhou,et al.  Transcriptional response of Desulfovibrio vulgaris Hildenborough to oxidative stress mimicking environmental conditions , 2008, Archives of Microbiology.

[53]  Alyssa M. Redding,et al.  Post-translational modifications of Desulfovibrio vulgaris Hildenborough sulfate reduction pathway proteins. , 2008, Journal of proteome research.

[54]  M. Fields,et al.  Hexavalent chromium reduction in Desulfovibrio vulgaris Hildenborough causes transitory inhibition of sulfate reduction and cell growth , 2008, Applied Microbiology and Biotechnology.

[55]  Schuyler F. Baldwin,et al.  The Complete Genome Sequence of Escherichia coli DH10B: Insights into the Biology of a Laboratory Workhorse , 2008, Journal of bacteriology.

[56]  A. K. Rowan,et al.  Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs , 2008, Nature.

[57]  Yinjie J. Tang,et al.  Isotopomer distributions in amino acids from a highly expressed protein as a proxy for those from total protein. , 2008, Analytical chemistry.

[58]  Natalia N. Ivanova,et al.  Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite , 2007, Nature.

[59]  M. Blumenberg,et al.  Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria , 2007, Nature.

[60]  J. Kuever,et al.  Molecular Analysis of the Diversity of Sulfate-Reducing and Sulfur-Oxidizing Prokaryotes in the Environment, Using aprA as Functional Marker Gene , 2007, Applied and Environmental Microbiology.

[61]  Adam P. Arkin,et al.  Response of Desulfovibrio vulgaris to Alkaline Stress , 2007, Journal of bacteriology.

[62]  M. Hecker,et al.  SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. , 2007, Annual review of microbiology.

[63]  P. Kitanidis,et al.  Inhibition of a U(VI)- and sulfate-reducing consortia by U(VI). , 2007, Environmental science & technology.

[64]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[65]  S. Quake,et al.  Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth , 2007, Proceedings of the National Academy of Sciences.

[66]  Aaron D. Peacock,et al.  Changes in Microbial Community Composition and Geochemistry during Uranium and Technetium Bioimmobilization , 2007, Applied and Environmental Microbiology.

[67]  Adam P. Arkin,et al.  Analysis of a ferric uptake regulator (Fur) mutant of Desulfovibrio vulgaris , 2010 .

[68]  Jizhong Zhou,et al.  In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen. , 2007, Environmental science & technology.

[69]  Weiwen Zhang,et al.  Comparative transcriptome analysis of Desulfovibrio vulgaris grown in planktonic culture and mature biofilm on a steel surface , 2007, Applied Microbiology and Biotechnology.

[70]  Paramvir S. Dehal,et al.  Cell-Wide Responses to Low-Oxygen Exposure in Desulfovibrio vulgaris Hildenborough , 2007, Journal of bacteriology.

[71]  Baohua Gu,et al.  GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes , 2007, The ISME Journal.

[72]  M. Wagner,et al.  Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). , 2007, FEMS microbiology ecology.

[73]  Karsten Zengler,et al.  Targeted Access to the Genomes of Low-Abundance Organisms in Complex Microbial Communities , 2007, Applied and Environmental Microbiology.

[74]  Wenying Shou,et al.  Synthetic cooperation in engineered yeast populations , 2007, Proceedings of the National Academy of Sciences.

[75]  M. Teixeira,et al.  The anaerobe Desulfovibrio desulfuricans ATCC 27774 grows at nearly atmospheric oxygen levels , 2007, FEBS letters.

[76]  C. Criddle,et al.  Sulfate Requirement for the Growth of U(VI)-Reducing Bacteria in an Ethanol-Fed Enrichment , 2007 .

[77]  J. Helmann,et al.  Functional specialization within the Fur family of metalloregulators , 2007, BioMetals.

[78]  T. Mascher,et al.  Stimulus Perception in Bacterial Signal-Transducing Histidine Kinases , 2006, Microbiology and Molecular Biology Reviews.

[79]  Yinjie J. Tang,et al.  Pathway Confirmation and Flux Analysis of Central Metabolic Pathways in Desulfovibrio vulgaris Hildenborough using Gas Chromatography-Mass Spectrometry and Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry , 2006, Journal of bacteriology.

[80]  Adam P. Arkin,et al.  The Evolution of Two-Component Systems in Bacteria Reveals Different Strategies for Niche Adaptation , 2006, PLoS Comput. Biol..

[81]  Eoin L Brodie,et al.  Application of a High-Density Oligonucleotide Microarray Approach To Study Bacterial Population Dynamics during Uranium Reduction and Reoxidation , 2006, Applied and Environmental Microbiology.

[82]  Natalia N. Ivanova,et al.  Symbiosis insights through metagenomic analysis of a microbial consortium. , 2006, Nature Reviews Microbiology.

[83]  M. Pop,et al.  Metagenomic Analysis of the Human Distal Gut Microbiome , 2006, Science.

[84]  Adam P. Arkin,et al.  Energetic Consequences of Nitrite Stress in Desulfovibrio vulgaris Hildenborough, Inferred from Global Transcriptional Analysis , 2006, Applied and Environmental Microbiology.

[85]  Jizhong Zhou,et al.  Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of u(VI) and geochemical control of u(VI) bioavailability. , 2006, Environmental science & technology.

[86]  Weiwen Zhang,et al.  Oxidative stress and heat-shock responses in Desulfovibrio vulgaris by genome-wide transcriptomic analysis , 2006, Antonie van Leeuwenhoek.

[87]  D. Stahl,et al.  Using the stress response to monitor process control: pathways to more effective bioremediation. , 2006, Current opinion in biotechnology.

[88]  J. Helmann,et al.  The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation , 2006, Nature.

[89]  R. Reid,et al.  Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries , 2006 .

[90]  Jizhong Zhou,et al.  Effects of legacy nuclear waste on the compositional diversity and distributions of sulfate-reducing bacteria in a terrestrial subsurface aquifer. , 2006, FEMS microbiology ecology.

[91]  Katherine H. Huang,et al.  Global Analysis of Heat Shock Response in Desulfovibrio vulgaris Hildenborough , 2006, Journal of bacteriology.

[92]  T. Marsh,et al.  Heterogeneous response to biostimulation for U(VI) reduction in replicated sediment microcosms , 2006, Biodegradation.

[93]  J. Leloup,et al.  Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary, France. , 2006, FEMS microbiology ecology.

[94]  Katherine H. Huang,et al.  Salt Stress in Desulfovibrio vulgaris Hildenborough: an Integrated Genomics Approach , 2005, Journal of bacteriology.

[95]  Jizhong Zhou,et al.  Changes in bacterial community structure correlate with initial operating conditions of a field-scale denitrifying fluidized bed reactor , 2005, Applied Microbiology and Biotechnology.

[96]  Inna Dubchak,et al.  Dissimilatory Metabolism of Nitrogen Oxides in Bacteria: Comparative Reconstruction of Transcriptional Networks , 2005, PLoS Comput. Biol..

[97]  Katherine H. Huang,et al.  Temporal Transcriptomic Analysis as Desulfovibrio vulgaris Hildenborough Transitions into Stationary Phase during Electron Donor Depletion , 2005, Applied and Environmental Microbiology.

[98]  P. Watnick,et al.  Role for Glycine Betaine Transport in Vibrio cholerae Osmoadaptation and Biofilm Formation within Microbial Communities , 2005, Applied and Environmental Microbiology.

[99]  Jizhong Zhou,et al.  Bioreduction of uranium in a contaminated soil column. , 2005, Environmental science & technology.

[100]  J. G. Kuenen,et al.  Nested PCR-Denaturing Gradient Gel Electrophoresis Approach To Determine the Diversity of Sulfate-Reducing Bacteria in Complex Microbial Communities , 2005, Applied and Environmental Microbiology.

[101]  V. Wendisch,et al.  Genome-Wide Analysis of the General Stress Response Network in Escherichia coli: σS-Dependent Genes, Promoters, and Sigma Factor Selectivity , 2005, Journal of bacteriology.

[102]  Luke E. Ulrich,et al.  One-component systems dominate signal transduction in prokaryotes. , 2005, Trends in microbiology.

[103]  Dorothea K. Thompson,et al.  Microbial Functional Genomics: Zhou/Microbial Functional Genomics , 2005 .

[104]  T. E. Cloete,et al.  Biofouling and Biocorrosion in Industrial Water Systems , 2005, Critical reviews in microbiology.

[105]  Gerrit Voordouw,et al.  Physiological and Gene Expression Analysis of Inhibition of Desulfovibrio vulgaris Hildenborough by Nitrite , 2004, Journal of bacteriology.

[106]  M. Wagner,et al.  Microarray and Functional Gene Analyses of Sulfate-Reducing Prokaryotes in Low-Sulfate, Acidic Fens Reveal Cooccurrence of Recognized Genera and Novel Lineages , 2004, Applied and Environmental Microbiology.

[107]  Inna Dubchak,et al.  Reconstruction of regulatory and metabolic pathways in metal-reducing δ-proteobacteria , 2004, Genome Biology.

[108]  D. Jones,et al.  Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs , 2004, Nature.

[109]  R. Amann,et al.  The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. , 2004, Environmental microbiology.

[110]  Rekha Seshadri,et al.  The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough , 2004, Nature Biotechnology.

[111]  B. Peyton,et al.  Uranium immobilization by sulfate-reducing biofilms. , 2004, Environmental science & technology.

[112]  Jizhong Zhou Microbial Functional Genomics , 2004 .

[113]  Martin Stratmann,et al.  Iron corrosion by novel anaerobic microorganisms , 2004, Nature.

[114]  Ian M. Head,et al.  Biological activity in the deep subsurface and the origin of heavy oil , 2003, Nature.

[115]  Jizhong Zhou,et al.  Molecular Diversity of Sulfate-Reducing Bacteria from Two Different Continental Margin Habitats , 2003, Applied and Environmental Microbiology.

[116]  V. Peraino,et al.  Desulfovibrio desulfuricans Bacteremia and Review of Human Desulfovibrio Infections , 2003, Journal of Clinical Microbiology.

[117]  Jizhong Zhou Microarrays for bacterial detection and microbial community analysis. , 2003, Current opinion in microbiology.

[118]  D. Schriemer,et al.  Function of Oxygen Resistance Proteins in the Anaerobic, Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough , 2003, Journal of bacteriology.

[119]  V. de Lorenzo,et al.  Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. , 2002, FEMS microbiology reviews.

[120]  G. Voordouw Carbon Monoxide Cycling by Desulfovibrio vulgaris Hildenborough , 2002, Journal of bacteriology.

[121]  K. Schleifer,et al.  Oligonucleotide Microarray for 16S rRNA Gene-Based Detection of All Recognized Lineages of Sulfate-Reducing Prokaryotes in the Environment , 2002, Applied and Environmental Microbiology.

[122]  Bernhard Schink,et al.  Synergistic interactions in the microbial world , 2002, Antonie van Leeuwenhoek.

[123]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[124]  D. Kurtz,et al.  A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase. , 2001, Archives of biochemistry and biophysics.

[125]  C. Joulian,et al.  Congruent Phylogenies of Most Common Small-Subunit rRNA and Dissimilatory Sulfite Reductase Gene Sequences Retrieved from Estuarine Sediments , 2001, Applied and Environmental Microbiology.

[126]  N. Shenvi,et al.  Rubrerythrin and Rubredoxin Oxidoreductase in Desulfovibrio vulgaris: a Novel Oxidative Stress Protection System , 2001 .

[127]  Elias S. J. Arnér,et al.  Physiological functions of thioredoxin and thioredoxin reductase. , 2000, European journal of biochemistry.

[128]  F. Estruch Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. , 2000, FEMS microbiology reviews.

[129]  Burt,et al.  Natural selection in the wild. , 2000, Trends in ecology & evolution.

[130]  M. Adams,et al.  Anaerobic microbes: oxygen detoxification without superoxide dismutase. , 1999, Science.

[131]  J. N. Thompson,et al.  Rapid evolution as an ecological process. , 1998, Trends in ecology & evolution.

[132]  Michael Wagner,et al.  Phylogeny of Dissimilatory Sulfite Reductases Supports an Early Origin of Sulfate Respiration , 1998, Journal of bacteriology.

[133]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[134]  Oliver J. Hao,et al.  Sulfate‐reducing bacteria , 1996 .

[135]  G. Voordouw The genus desulfovibrio: the centennial , 1995, Applied and environmental microbiology.

[136]  G. Voordouw,et al.  Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR , 1995, Applied and environmental microbiology.

[137]  R. Rosenzweig,et al.  Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. , 1994, Genetics.

[138]  G. M. Smith,et al.  Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes , 1994, Journal of bacteriology.

[139]  M. W. Reij,et al.  The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex , 1993, Journal of bacteriology.

[140]  R. Lenski,et al.  Long-Term Experimental Evolution in Escherichia coli. I. Adaptation and Divergence During 2,000 Generations , 1991, The American Naturalist.

[141]  W. Whitman,et al.  Isolation and characterization of 22 mesophilic methanococci , 1986 .

[142]  J. M. Odom,et al.  Hydrogen cycling as a general mechanism for energy coupling in the sulfate‐reducing bacteria, Desulfovibrio sp. , 1981 .

[143]  Robert M. May,et al.  Theoretical Ecology: Principles and Applications , 1977 .

[144]  M. P. Bryant,et al.  Growth of Desulfovibrio in Lactate or Ethanol Media Low in Sulfate in Association with H2-Utilizing Methanogenic Bacteria , 1977, Applied and environmental microbiology.

[145]  G. Storz,et al.  Bacterial stress responses. , 2011 .

[146]  Christopher L. Hemme,et al.  Hydrogen peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenboroughemi_2234 1..13 , 2010 .

[147]  Forest Rohwer,et al.  Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas, Mexico. , 2009, Environmental microbiology.

[148]  Monica E. Ortiz,et al.  Can microbially-generated hydrogen sulfide account for the rates of U(VI) reduction by a sulfate-reducing bacterium? , 2009, Biodegradation.

[149]  Jizhong Zhou,et al.  Bacterial community succession during in situ uranium bioremediation: spatial similarities along controlled flow paths , 2009, The ISME Journal.

[150]  W. Hamilton,et al.  The Market for " Lemons " : Quality Uncertainty and the Market Mechanism , 2008 .

[151]  D. Stahl,et al.  Molecular Systems Biology 3; Article number 92; doi:10.1038/msb4100131 Citation: Molecular Systems Biology 3:92 , 2022 .

[152]  J. Pincemail,et al.  [Oxidative stress]. , 2007, Revue medicale de Liege.

[153]  L. Barton,et al.  Sulphate-reducing bacteria: environmental and engineered systems. , 2007 .

[154]  Marcy Yann,et al.  ヒト口腔からの微量の培養されないTM7微生物の単一細胞遺伝分析による生物学的「不明な物体」の詳細な分析 , 2007 .

[155]  Dick B Janssen,et al.  Biocatalysis by dehalogenating enzymes. , 2007, Advances in applied microbiology.

[156]  L. Krumholz,et al.  Uranium reduction. , 2006, Annual review of microbiology.

[157]  M. A T T H E,et al.  Bioreduction of Uranium in a Contaminated Soil Column , 2005 .

[158]  M. Hecker,et al.  General stress response of Bacillus subtilis and other bacteria. , 2001, Advances in microbial physiology.

[159]  Mehdi Nemati,et al.  Impact of Nitrate‐Mediated Microbial Control of Souring in Oil Reservoirs on the Extent of Corrosion , 2001, Biotechnology progress.

[160]  H. Cypionka,et al.  Oxygen respiration by desulfovibrio species. , 2000, Annual review of microbiology.

[161]  Larry L. Barton,et al.  Sulfate-Reducing Bacteria , 1995, Biotechnology Handbooks.

[162]  G. Macfarlane,et al.  Sulphate-reducing bacteria , 1991 .