Resources of nonlinear cavity magnonics for quantum information

We theoretically explore nonlinearities of ferromagnets in microwave cavities in the classical and quantum regimes, and assess the resources for quantum information, i.e. fluctuation squeezing and bipartite entanglement. The (semi-)classical analysis of the anharmonic oscillator (Duffing) model for the Kittel mode when including all other magnon modes, reveals chaotic and limit-cycle phases that do not survive in quantum calculations. However, magnons with nonzero wavenumbers that are driven by the Suhl instability of the Kittel mode, form a genuine limit cycle. We subsequently compute bounds for the distillable entanglement, as well as entanglement of formation for the bipartite configurations of the mixed magnon modes. The distillable entanglement of bipartite states accessible from a covariance matrix vanishes, but can be recovered by injection locking. The predicted magnon entanglement can be experimentally tested with yttrium iron garnet samples under realistic conditions.

[1]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[2]  H. Suhl The theory of ferromagnetic resonance at high signal powers , 1957 .

[3]  L. Walker Magnetostatic Modes in Ferromagnetic Resonance , 1957 .

[4]  L. Walker Resonant Modes of Ferromagnetic Spheroids , 1958 .

[5]  R. Damon,et al.  Magnetostatic modes of a ferromagnet slab , 1961 .

[6]  R. White,et al.  Ferromagnetic Relaxation. III. Theory of Instabilities , 1963 .

[7]  Robert M. White Quantum Theory of Magnetism , 1969 .

[8]  R. V. Smith REVIEW OF HEAT TRANSFER TO HELIUM I. , 1969 .

[9]  P. Hansen,et al.  Anisotropy and magnetostriction of germanium‐substituted yttrium iron garnet , 1972 .

[10]  F. Arecchi,et al.  Atomic coherent states in quantum optics , 1972 .

[11]  C. Araújo Quantum-statistical theory of the nonlinear excitation of magnons in parallel pumping experiments , 1974 .

[12]  D. Walls,et al.  Quantum theory of optical bistability. I. Nonlinear polarisability model , 1980 .

[13]  C. Jeffries,et al.  Observation of period doubling and chaos in spin-wave instabilities in yttrium iron garnet , 1984 .

[14]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[15]  A. Slavin,et al.  Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions , 1986 .

[16]  Nakamura,et al.  Spin-wave dynamics in a ferrimagnetic sphere. , 1988, Physical review. A, General physics.

[17]  S. Rezende,et al.  Spin-wave instabilities, auto-oscillations, and chaos in yttrium-iron-garnet , 1990, Proc. IEEE.

[18]  H. Abarbanel,et al.  Lyapunov exponents from observed time series. , 1990, Physical review letters.

[19]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[20]  Ueda,et al.  Squeezed spin states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[21]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[22]  Vaidman Teleportation of quantum states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[23]  A. Slavin,et al.  "Bright" and "dark" spin wave envelope solitons in magnetic films , 1994 .

[24]  D. DiVincenzo Quantum Computation , 1995, Science.

[25]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[26]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[27]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[28]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[29]  M. Horodecki,et al.  Inseparable Two Spin- 1 2 Density Matrices Can Be Distilled to a Singlet Form , 1997 .

[30]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[31]  K. Życzkowski,et al.  Composed ensembles of random unitary matrices , 1997, chao-dyn/9707006.

[32]  S. Braunstein,et al.  Quantum computation over continuous variables , 1998 .

[33]  H. Kimble,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[34]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[35]  H. Carmichael Statistical Methods in Quantum Optics 1 , 1999 .

[36]  S. Gevorgian,et al.  Conformal mapping of the field and charge distributions in multilayered substrate CPWs , 1999 .

[37]  K. Życzkowski On the volume of the set of mixed entangled states II , 1999, quant-ph/9902050.

[38]  K. Kheruntsyan Wigner function for a driven anharmonic oscillator , 1999 .

[39]  G. Vidal Entanglement of pure states for a single copy , 1999, quant-ph/9902033.

[40]  Y. Kivshar,et al.  Spatial and spatiotemporal self-focusing of spin waves in garnet films observed by space- and time-resolved Brillouin light scattering , 2000 .

[41]  H. Craighead Nanoelectromechanical systems. , 2000, Science.

[42]  G. Vidal,et al.  Approximate transformations and robust manipulation of bipartite pure-state entanglement , 1999, quant-ph/9910099.

[43]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[44]  William K. Wootters,et al.  Entanglement of formation and concurrence , 2001, Quantum Inf. Comput..

[45]  Andrew G. Glen,et al.  APPL , 2001 .

[46]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[47]  J. Fiurášek Conditional generation of N -photon entangled states of light , 2001, quant-ph/0110138.

[48]  P. Kok,et al.  Linear optics and projective measurements alone suffice to create large-photon-number path entanglement , 2001, quant-ph/0109080.

[49]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[50]  M. Hurben,et al.  Theory of magnetostatic waves for in-plane magnetized isotropic films , 1995 .

[51]  A. Doherty,et al.  Cavity Quantum Electrodynamics: Coherence in Context , 2002, Science.

[52]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[53]  Time-resolved homodyne characterization of individual quadrature-entangled pulses , 2004, quant-ph/0409211.

[54]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[55]  A. Cleland,et al.  Noise-enabled precision measurements of a duffing nanomechanical resonator. , 2004, Physical review letters.

[56]  F. Illuminati,et al.  Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states , 2005, quant-ph/0506124.

[57]  J. Katine,et al.  Mutual phase-locking of microwave spin torque nano-oscillators , 2005, Nature.

[58]  L. Carr,et al.  Observation of spin-wave soliton fractals in magnetic film active feedback rings. , 2006, Physical review letters.

[59]  S. Girvin,et al.  Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. , 2005, Physical review letters.

[60]  A. Slavin,et al.  Thermalization of a parametrically driven magnon gas leading to Bose-Einstein condensation. , 2007, Physical review letters.

[61]  A. Slavin,et al.  Spectroscopy of the parametric magnons excited by 4-wave process , 2007, cond-mat/0701287.

[62]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[63]  M. Oberthaler,et al.  Squeezing and entanglement in a Bose–Einstein condensate , 2008, Nature.

[64]  A. Slavin,et al.  Observation of spontaneous coherence in Bose-Einstein condensate of magnons. , 2008, Physical review letters.

[65]  G. Bertotti,et al.  Nonlinear Magnetization Dynamics in Nanosystems , 2009 .

[66]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[67]  Theory of coherence in Bose-Einstein condensation phenomena in a microwave-driven interacting magnon gas , 2009, 0902.3138.

[68]  V. Tiberkevich,et al.  Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current , 2009, IEEE Transactions on Magnetics.

[69]  Xiong-Jun Liu,et al.  Effect of induced spin-orbit coupling for atoms via laser fields. , 2008, Physical review letters.

[70]  S. Olivares,et al.  Full characterization of Gaussian bipartite entangled states by a single homodyne detector. , 2008, Physical review letters.

[71]  A. Lvovsky,et al.  Continuous-variable optical quantum-state tomography , 2009 .

[72]  S. Girvin,et al.  Cooling and squeezing via quadratic optomechanical coupling , 2010, 1004.2510.

[73]  M. Mariantoni,et al.  Dual-path state reconstruction scheme for propagating quantum microwaves and detector noise tomography. , 2010, Physical review letters.

[74]  M. Mariantoni,et al.  Planck spectroscopy and quantum noise of microwave beam splitters. , 2010, Physical review letters.

[75]  Yun Li,et al.  Atom-chip-based generation of entanglement for quantum metrology , 2010, Nature.

[76]  S. Filipp,et al.  Measurements of the Correlation Function of a Microwave Frequency Single Photon Source , 2010, 1002.3738.

[77]  M. Mariantoni,et al.  A Superconducting 180{\deg} Hybrid Ring Coupler for circuit Quantum Electrodynamics , 2010, 1009.5879.

[78]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[79]  A. Brataas,et al.  Magnetization dissipation in ferromagnets from scattering theory , 2011, 1104.1625.

[80]  J. Emerson,et al.  Corrigendum: Negative quasi-probability as a resource for quantum computation , 2012, 1201.1256.

[81]  A. Clerk,et al.  Quantum signatures of the optomechanical instability. , 2011, Physical review letters.

[82]  I. Wilson-Rae,et al.  Steady-state negative Wigner functions of nonlinear nanomechanical oscillators , 2011, 1104.5665.

[83]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[84]  S. Urazhdin,et al.  Magnetic nano-oscillator driven by pure spin current. , 2012, Nature materials.

[85]  R. Duine,et al.  Electronic pumping of quasiequilibrium Bose-Einstein-condensed magnons. , 2011, Physical review letters.

[86]  E. Solano,et al.  Path entanglement of continuous-variable quantum microwaves. , 2012, Physical review letters.

[87]  S. Girvin,et al.  Deterministically Encoding Quantum Information Using 100-Photon Schrödinger Cat States , 2013, Science.

[88]  S. Girvin,et al.  Observation of quantum state collapse and revival due to the single-photon Kerr effect , 2012, Nature.

[89]  Tony E. Lee,et al.  Quantum synchronization of quantum van der Pol oscillators with trapped ions. , 2013, Physical review letters.

[90]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[91]  F. Hocke,et al.  High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. , 2012, Physical review letters.

[92]  T. Palomaki,et al.  Entangling Mechanical Motion with Microwave Fields , 2013, Science.

[93]  S. Urazhdin,et al.  Synchronization of spin Hall nano-oscillators to external microwave signals , 2014, Nature Communications.

[94]  Y. Lai,et al.  Supplementary Information for Nonlinear dynamics and quantum entanglement in optomechanical systems , 2014 .

[95]  A. Serga,et al.  Magnon transistor for all-magnon data processing , 2014, Nature Communications.

[96]  H. Tang,et al.  Strongly coupled magnons and cavity microwave photons. , 2014, Physical review letters.

[97]  Yasunobu Nakamura,et al.  Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. , 2014, Physical review letters.

[98]  A. Serga,et al.  Bose–Einstein condensation in an ultra-hot gas of pumped magnons , 2014, Nature Communications.

[99]  P. Li,et al.  Nanometer-Thick Yttrium Iron Garnet Films With Extremely Low Damping , 2014, IEEE Magnetics Letters.

[100]  B. Baudouy Heat Transfer and Cooling Techniques at Low Temperature , 2015, 1501.07153.

[101]  Hao Zhang,et al.  Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon , 2015, Nature.

[102]  H. Tang,et al.  Magnon dark modes and gradient memory , 2015, Nature Communications.

[103]  O. Shevchuk,et al.  Optomechanical response of a nonlinear mechanical resonator , 2015, 1507.06851.

[104]  J. Baumberg,et al.  Magneto-optical coupling in whispering-gallery-mode resonators , 2015, 1510.06661.

[105]  C. S. Bhatia,et al.  Synchronization of spin-transfer torque oscillators by spin pumping, inverse spin Hall, and spin Hall effects , 2015, 1506.01357.

[106]  Yasunobu Nakamura,et al.  Coherent coupling between a ferromagnetic magnon and a superconducting qubit , 2014, Science.

[107]  Y. P. Chen,et al.  Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems. , 2015, Physical review letters.

[108]  A. Rückriegel,et al.  Rayleigh-Jeans Condensation of Pumped Magnons in Thin-Film Ferromagnets. , 2015, Physical review letters.

[109]  V. Leborán,et al.  Analysis of the temperature dependence of the thermal conductivity of insulating single crystal oxides , 2016 .

[110]  W. Belzig,et al.  Super-Poissonian Shot Noise of Squeezed-Magnon Mediated Spin Transport. , 2016, Physical review letters.

[111]  J. You,et al.  Magnon Kerr effect in a strongly coupled cavity-magnon system , 2016, 1609.07891.

[112]  Yasunobu Nakamura,et al.  Cavity Optomagnonics with Spin-Orbit Coupled Photons. , 2015, Physical review letters.

[113]  A. Serga,et al.  Supercurrent in a room-temperature Bose–Einstein magnon condensate , 2015, Nature Physics.

[114]  Yasunobu Nakamura,et al.  Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet , 2016, Science Advances.

[115]  H. Tang,et al.  Optomagnonic Whispering Gallery Microresonators. , 2015, Physical review letters.

[116]  Jian-Wei Pan,et al.  Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates , 2015, Science.

[117]  A. Clerk,et al.  Topological Quantum Fluctuations and Traveling Wave Amplifiers , 2016, 1604.04179.

[118]  J. Haigh,et al.  Triple-Resonant Brillouin Light Scattering in Magneto-Optical Cavities. , 2016, Physical review letters.

[119]  R. Morris,et al.  Strong coupling of magnons in a YIG sphere to photons in a planar superconducting resonator in the quantum limit , 2016, Scientific Reports.

[120]  Patterned growth of crystalline Y3Fe5O12 nanostructures with engineered magnetic shape anisotropy , 2017, 1704.03056.

[121]  Y. Blanter,et al.  Light scattering by magnons in whispering gallery mode cavities , 2017, 1706.04106.

[122]  J. You,et al.  Bistability of Cavity Magnon Polaritons. , 2017, Physical review letters.

[123]  M. Kostylev,et al.  Cavity magnon polaritons with lithium ferrite and three-dimensional microwave resonators at millikelvin temperatures , 2017, 1711.09980.

[124]  Egyes tételeknél,et al.  B-1 , 2018, Houston Rap Tapes.

[125]  K. Xia,et al.  Strong Interlayer Magnon-Magnon Coupling in Magnetic Metal-Insulator Hybrid Nanostructures. , 2018, Physical review letters.

[126]  M. Aspelmeyer,et al.  Remote quantum entanglement between two micromechanical oscillators , 2017, Nature.

[127]  G. Bauer,et al.  Topologically nontrivial magnonic solitons , 2018, Physical Review B.

[128]  Y. Blanter,et al.  Chiral excitation of spin waves in ferromagnetic films by magnetic nanowire gratings , 2019, Physical Review B.

[129]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[130]  J. Fink,et al.  Stationary entangled radiation from micromechanical motion , 2018, Nature.

[131]  Luqiao Liu,et al.  Strong Coupling between Microwave Photons and Nanomagnet Magnons. , 2019, Physical review letters.

[132]  W. Kwok,et al.  Strong Coupling between Magnons and Microwave Photons in On-Chip Ferromagnet-Superconductor Thin-Film Devices. , 2019, Physical review letters.

[133]  Y. Blanter,et al.  Excitation of unidirectional exchange spin waves by a nanoscale magnetic grating , 2019, Physical Review B.

[134]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[135]  S. Streib,et al.  Magnon-phonon interactions in magnetic insulators , 2019, Physical Review B.

[136]  G. Schmidt,et al.  Monocrystalline Freestanding Three-Dimensional Yttrium-Iron-Garnet Magnon Nanoresonators , 2018, Physical Review Applied.

[137]  Magn. , 2020, Catalysis from A to Z.

[138]  Magnon Accumulation in Chirally Coupled Magnets. , 2019, Physical review letters.

[139]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[140]  Chem. , 2020, Catalysis from A to Z.

[141]  Yaliang Li,et al.  SCI , 2021, Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

[142]  A. Pires,et al.  Spin waves I , 2021 .

[143]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[144]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[145]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[146]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.