A new calibration of the effective scattering albedo and soil roughness parameters in the SMOS SM retrieval algorithm

Abstract This study focuses on the calibration of the effective vegetation scattering albedo (ω) and surface soil roughness parameters (H R , and N Rp , p = H,V) in the Soil Moisture (SM) retrieval from L-band passive microwave observations using the L-band Microwave Emission of the Biosphere (L-MEB) model. In the current Soil Moisture and Ocean Salinity (SMOS) Level 2 (L2), v620, and Level 3 (L3), v300, SM retrieval algorithms, low vegetated areas are parameterized by ω = 0 and H R  = 0.1, whereas values of ω = 0.06 − 0.08 and H R  = 0.3 are used for forests. Several parameterizations of the vegetation and soil roughness parameters (ω, H R and N Rp , p = H,V) were tested in this study, treating SMOS SM retrievals as homogeneous over each pixel instead of retrieving SM over a representative fraction of the pixel, as implemented in the operational SMOS L2 and L3 algorithms. Globally-constant values of ω = 0.10, H R  = 0.4 and N Rp  = −1 (p = H,V) were found to yield SM retrievals that compared best with in situ SM data measured at many sites worldwide from the International Soil Moisture Network (ISMN). The calibration was repeated for collections of in situ sites classified in different land cover categories based on the International Geosphere-Biosphere Programme (IGBP) scheme. Depending on the IGBP land cover class, values of ω and H R varied, respectively, in the range 0.08–0.12 and 0.1–0.5. A validation exercise based on in situ measurements confirmed that using either a global or an IGBP-based calibration, there was an improvement in the accuracy of the SM retrievals compared to the SMOS L3 SM product considering all statistical metrics (R = 0.61, bias = −0.019 m 3  m −3 , ubRMSE = 0.062 m 3  m −3 for the IGBP-based calibration; against R = 0.54, bias = −0.034 m 3  m −3 and ubRMSE = 0.070 m 3  m −3 for the SMOS L3 SM product). This result is a key step in the calibration of the roughness and vegetation parameters in the operational SMOS retrieval algorithm. The approach presented here is the core of a new forthcoming SMOS optimized SM product.

[1]  Martyn P. Clark,et al.  Characteristics of large snowfall events in the montane western United States as examined using snowpack telemetry (SNOTEL) data , 2001 .

[2]  Nemesio J. Rodríguez-Fernández,et al.  Global SMOS Soil Moisture Retrievals from The Land Parameter Retrieval Model , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[3]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[4]  A. Al Bitar,et al.  Global-Scale Comparison of Passive (SMOS) and Active (ASCAT) Satellite Based Microwave Soil Moisture Retrievals with Soil Moisture Simulations (MERRA-Land) , 2014 .

[5]  Jean-Pierre Wigneron,et al.  Estimating the Effective Soil Temperature at L-Band as a Function of Soil Properties , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Arnaud Mialon,et al.  Evaluating the Semiempirical $H$– $Q$ Model Used to Calculate the L-Band Emissivity of a Rough Bare Soil , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[7]  M. Guérif,et al.  Adjustment procedures of a crop model to the site specific characteristics of soil and crop using remote sensing data assimilation , 2000 .

[8]  Philippe Richaume,et al.  SMOS Level 2 Retrieval Algorithm Over Forests: Description and Generation of Global Maps , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[9]  G. Lannoy,et al.  Global Calibration of the GEOS-5 L-Band Microwave Radiative Transfer Model over Nonfrozen Land Using SMOS Observations , 2013 .

[10]  Dara Entekhabi,et al.  Vegetation optical depth and scattering albedo retrieval using time series of dual-polarized L-band radiometer observations , 2016 .

[11]  Arnaud Mialon,et al.  SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product , 2017, Remote. Sens..

[12]  Yann Kerr,et al.  A Simple Model of the Bare Soil Microwave Emission at L-Band , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[13]  A. Al Bitar,et al.  The global SMOS Level 3 daily soil moisture and brightness temperature maps , 2017 .

[14]  Jasper A. Vrugt,et al.  Uncertainty quantification of GEOS-5 L-band radiative transfer model parameters using Bayesian inference and SMOS observations , 2014 .

[15]  Arnaud Mialon,et al.  Comparison of SMOS and AMSR-E vegetation optical depth to four MODIS-based vegetation indices , 2016 .

[16]  Y. Kerr,et al.  Effective soil moisture sampling depth of L-band radiometry: A case study , 2010 .

[17]  P. M. Salgado-Hernanz,et al.  Roughness and vegetation parameterizations at L-band for soil moisture retrievals over a vineyard field , 2015 .

[18]  Y. Kerr,et al.  The SMOS Mediterranean Ecosystem L-Band characterisation EXperiment (MELBEX-I) over natural shrubs , 2010 .

[19]  Jean-Christophe Calvet,et al.  In situ soil moisture observations for the CAL/VAL of SMOS: the SMOSMANIA network , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[20]  Mehmet Kurum,et al.  Quantifying scattering albedo in microwave emission of vegetated terrain , 2013 .

[21]  Evan J. Coopersmith,et al.  Comparing AMSR-E soil moisture estimates to the extended record of the U.S. Climate Reference Network (USCRN) , 2015 .

[22]  Zhao-Liang Li,et al.  Preliminary validation of two temporal parameter-based soil moisture retrieval models using a satellite product and in situ soil moisture measurements over the REMEDHUS network , 2016 .

[23]  Lars Isaksen,et al.  Soil Moisture Analyses at ECMWF: Evaluation Using Global Ground-Based In Situ Observations , 2012 .

[24]  W. Wagner,et al.  Improving runoff prediction through the assimilation of the ASCAT soil moisture product , 2010 .

[25]  Arnaud Mialon,et al.  Considering combined or separated roughness and vegetation effects in soil moisture retrievals , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[26]  Yann Kerr,et al.  Temperature- and Texture-Dependent Dielectric Model for Moist Soils at 1.4 GHz , 2013, IEEE Geoscience and Remote Sensing Letters.

[27]  L. Isaksen,et al.  A simplified Extended Kalman Filter for the global operational soil moisture analysis at ECMWF , 2013 .

[28]  Brian K. Hornbuckle,et al.  Initial Validation of SMOS Vegetation Optical Thickness in Iowa , 2013, IEEE Geosci. Remote. Sens. Lett..

[29]  Andrew W. Western,et al.  Towards a general equation for frequency domain reflectometers | NOVA. The University of Newcastle's Digital Repository , 2010 .

[30]  Chun-Hsu Su,et al.  SMOS soil moisture retrievals using the land parameter retrieval model: Evaluation over the Murrumbidgee Catchment, southeast Australia , 2015 .

[31]  A. Robock,et al.  The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements , 2011 .

[32]  M. Jin,et al.  A Study of the Relations between Soil Moisture, Soil Temperatures and Surface Temperatures Using ARM Observations and Offline CLM4 Simulations , 2014 .

[33]  Arnaud Mialon,et al.  Comparison of SMOS and SMAP soil moisture retrieval approaches using tower-based radiometer data over a vineyard field , 2014 .

[34]  Damien Sulla-Menashe,et al.  A Global Land Cover Climatology Using MODIS Data , 2014 .

[35]  T. Mo,et al.  A model for microwave emission from vegetation‐covered fields , 1982 .

[36]  R. Jeu,et al.  Multisensor historical climatology of satellite‐derived global land surface moisture , 2008 .

[37]  Jonas Ardö,et al.  Relation between Seasonally Detrended Shortwave Infrared Reflectance Data and Land Surface Moisture in Semi-Arid Sahel , 2013, Remote. Sens..

[38]  A. Al Bitar,et al.  Modelling the Passive Microwave Signature from Land Surfaces: A Review of Recent Results and Application to the L-Band SMOS SMAP Soil Moisture Retrieval Algorithms , 2017 .

[39]  A. Al Bitar,et al.  Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to Land Data Assimilation System estimates , 2014, Remote Sensing of Environment.

[40]  R. Lacaze,et al.  A Global Database of Land Surface Parameters at 1-km Resolution in Meteorological and Climate Models , 2003 .

[41]  Paul Poli,et al.  Atmospheric conservation properties in ERA‐Interim , 2011 .

[42]  E. Small,et al.  Use of GPS receivers as a soil moisture network for water cycle studies , 2008 .

[43]  J. Kong,et al.  Theory for passive microwave remote sensing of near‐surface soil moisture , 1977 .

[44]  Yann Kerr,et al.  Validation of Soil Moisture and Ocean Salinity (SMOS) Soil Moisture Over Watershed Networks in the U.S. , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[45]  J. Wigneron,et al.  A field experiment on microwave forest radiometry: L-band signal behaviour for varying conditions of surface wetness , 2007 .

[46]  B. Choudhury,et al.  Remote sensing of soil moisture content over bare field at 1.4 GHz frequency , 1981 .

[47]  Arnaud Mialon,et al.  Global-scale surface roughness effects at L-band as estimated from SMOS observations. , 2016 .

[48]  Arnaud Mialon,et al.  The SMOS Soil Moisture Retrieval Algorithm , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Niall P. Hanan,et al.  AMMA-CATCH studies in the Sahelian region of West-Africa: an overview , 2009 .

[50]  T. Jackson,et al.  The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN) , 2007 .

[51]  A. Al Bitar,et al.  First evaluation of the simultaneous SMOS and ELBARA-II observations in the Mediterranean region , 2012 .

[52]  Matthias Drusch,et al.  Global Automated Quality Control of In Situ Soil Moisture Data from the International Soil Moisture Network , 2013 .

[53]  A. Al Bitar,et al.  Testing regression equations to derive long-term global soil moisture datasets from passive microwave observations , 2016 .

[54]  Wade T. Crow,et al.  Performance Metrics for Soil Moisture Retrievals and Application Requirements , 2009 .

[55]  Yann Kerr,et al.  A simple parameterization of the L-band microwave emission from rough agricultural soils , 2001, IEEE Trans. Geosci. Remote. Sens..

[56]  Y. Kerr,et al.  L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields , 2007 .