Quantum Computers: Noise Propagation and Adversarial Noise Models

In this paper we consider adversarial noise models that will fail quantum error correction and fault-tolerant quantum computation. We describe known results regarding high-rate noise, sequential computation, and reversible noisy computation. We continue by discussing highly correlated noise and the "boundary," in terms of correlation of errors, of the "threshold theorem." Next, we draw a picture of adversarial forms of noise called (collectively) "detrimental noise." Detrimental noise is modeled after familiar properties of noise propagation. However, it can have various causes. We start by pointing out the difference between detrimental noise and standard noise models for two qubits and proceed to a discussion of highly entangled states, the rate of noise, and general noisy quantum systems.

[1]  Amnon Ta-Shma,et al.  Approximate Quantum Error Correction for Correlated Noise , 2009, IEEE Transactions on Information Theory.

[2]  John Preskill,et al.  Fault-tolerant quantum computation versus Gaussian noise , 2008, 0810.4953.

[3]  Gil Kalai,et al.  How Quantum Computers Can Fail , 2006, quant-ph/0607021.

[4]  Gil Kalai Detrimental Decoherence , 2008 .

[5]  Ronald de Wolf,et al.  Upper bounds on the noise threshold for fault-tolerant quantum computing , 2008, Quantum Inf. Comput..

[6]  John Preskill,et al.  Fault-tolerant quantum computation against biased noise , 2007, 0710.1301.

[7]  John Preskill,et al.  Accuracy threshold for postselected quantum computation , 2007, Quantum Inf. Comput..

[8]  A. Shabani Correlated errors can lead to better performance of quantum codes , 2007, quant-ph/0703142.

[9]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[10]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[11]  P. Hayden,et al.  Black holes as mirrors: Quantum information in random subsystems , 2007, 0708.4025.

[12]  Alexander Schrijver,et al.  New Limits on Fault-Tolerant Quantum Computation , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[13]  R. Alicki,et al.  Can one build a quantum hard drive? A no-go theorem for storing quantum information in equilibrium systems , 2006, quant-ph/0603260.

[14]  J. Preskill,et al.  Fault-tolerant quantum computation with long-range correlated noise. , 2005, Physical review letters.

[15]  J. Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2005, Quantum Inf. Comput..

[16]  P. Zanardi,et al.  Are the Assumptions of Fault-Tolerant Quantum Error Correction Internally Consistent? , 2005 .

[17]  R. Klesse,et al.  Quantum error correction in spatially correlated quantum noise. , 2005, Physical review letters.

[18]  A J Leggett,et al.  The Quantum Measurement Problem , 2005, Science.

[19]  E. Knill Quantum computing with realistically noisy devices , 2004, Nature.

[20]  M. Nielsen,et al.  Fault-tolerant quantum computation with cluster states , 2004, quant-ph/0405134.

[21]  B. Terhal,et al.  Fault-tolerant quantum computation for local non-Markovian noise , 2004, quant-ph/0402104.

[22]  Scott Aaronson,et al.  Multilinear formulas and skepticism of quantum computing , 2003, STOC '04.

[23]  A. Razborov An upper bound on the threshold quantum decoherence rate , 2003, Quantum Inf. Comput..

[24]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[25]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[26]  M. Horodecki,et al.  Dynamical description of quantum computing: Generic nonlocality of quantum noise , 2001, quant-ph/0105115.

[27]  Andrew M. Childs,et al.  Robustness of adiabatic quantum computation , 2001, quant-ph/0108048.

[28]  M. Ledoux The concentration of measure phenomenon , 2001 .

[29]  J. Preskill Quantum clock synchronization and quantum error correction , 2000, quant-ph/0010098.

[30]  Richard Cleve,et al.  Fast parallel circuits for the quantum Fourier transform , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[31]  J. Preskill Quantum information and physics: Some future directions , 1999, quant-ph/9904022.

[32]  J. Preskill Quantum computing: pro and con , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[33]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[35]  E. Knill Quantum Computing with Very Noisy Devices , 1998 .

[36]  M. Ben-Or,et al.  Fault-tolerant quantum computation with constant error , 1996, STOC '97.

[37]  A. Kitaev Quantum Error Correction with Imperfect Gates , 1997 .

[38]  M. Ben-Or,et al.  Limitations of Noisy Reversible Computation , 1996, quant-ph/9611028.

[39]  Dorit Aharonov,et al.  Polynomial simulations of decohered quantum computers , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[40]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[41]  R. Landauer The physical nature of information , 1996 .

[42]  R. Landauer Is quantum mechanics useful , 1995 .

[43]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[44]  Unruh,et al.  Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[45]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[46]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[47]  Fan Chung Graham,et al.  Some intersection theorems for ordered sets and graphs , 1986, J. Comb. Theory, Ser. A.