SiO and GeO bonded interactions as inferred from the bond critical point properties of electron density distributions

[1]  G. V. Gibbs,et al.  A study of the bonded interactions in nitride molecules in terms of bond critical point properties and relative electronegativities , 1998 .

[2]  G. V. Gibbs,et al.  Critical point properties of electron density distributions for oxide molecules containing first and second row cations , 1997 .

[3]  Samuel A. Johnson,et al.  Study of Bond Angles and Bond Lengths in Disiloxane and Related Molecules in Terms of the Topology of the Electron Density and Its Laplacian. , 1997, Inorganic chemistry.

[4]  G. V. Gibbs,et al.  The SiO bond and electron density distributions , 1997 .

[5]  L. Benco,et al.  Ab initio periodic Hartree-Fock study of lizardite IT , 1996 .

[6]  J. W. Downs Electron Density and Electrostatic Potential of Coesite , 1995 .

[7]  S. Q. Newton,et al.  Choice of computational techniques and molecular models for ab initio calculations pertaining to solid silicates , 1994 .

[8]  M. Boisen,et al.  Bond stretching force constants and compressibilities of nitride, oxide, and sulfide coordination polyhedra in molecules and crystals , 1994 .

[9]  W. H. Baur,et al.  Natrolite, part II: Determination of deformation electron densities by the X-X method , 1994 .

[10]  L. C. Allen Chemistry and electronegativity , 1994 .

[11]  W. Schwarz,et al.  Electron Density Distributions and Atomic Charges , 1993 .

[12]  R. Downs,et al.  Variations of bond lengths and volumes of silicate tetrahedra with temperature , 1992 .

[13]  T. Hahn,et al.  Crystal structures of the low-temperature quartz-type phases of SiO2 and GeO2 at elevated pressure , 1992 .

[14]  J. W. Downs,et al.  The Laplacian of the electron density and the electrostatic potential of danburite, CaB2Si2O8 , 1992 .

[15]  P. D'arco,et al.  Pseudopotential Periodic Hartree‐Fock Study of the Cristobalite Phases of Silica and Germanium Dioxide , 1992 .

[16]  C. Gatti,et al.  Experimental vs. theoretical topological properties of charge density distributions. An application to the l-alanine molecule studied by X-ray diffraction at 23 K , 1992 .

[17]  J. V. Lenthe,et al.  H6Si2O7: Ab initio molecular orbital calculations show two geometric conformations , 1991 .

[18]  Martins,et al.  Electronic properties of alpha -quartz under pressure. , 1991, Physical review. B, Condensed matter.

[19]  Dieter Cremer,et al.  The Concept of the Chemical Bond , 1990 .

[20]  Leland C. Allen,et al.  Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms , 1989 .

[21]  A. Navrotsky Silicates and germanates at high pressure , 1989 .

[22]  J. Gauss,et al.  Strain in three-membered rings containing silicon: The inability of silicon to form flexible hybrid orbitals , 1988 .

[23]  R. J. Boyd,et al.  Atomic and group electronegativities from the electron density distributions of molecules , 1988 .

[24]  G. V. Gibbs,et al.  Molecular mimicry of bond length and angle variations in germanate and thiogermanate crystals: a comparison with variations calculated for carbon-, silicon-, and tin-containing oxide and sulfide molecules , 1987 .

[25]  M. Boisen,et al.  A method for calculating fractional s-character for bonds of tetrahedral oxyanions in crystals , 1987 .

[26]  M. Spackman,et al.  Electron density and the chemical bond. A reappraisal of Berlin's theorem , 1985 .

[27]  Elfi Kraka,et al.  Chemical Bonds without Bonding Electron Density — Does the Difference Electron‐Density Analysis Suffice for a Description of the Chemical Bond? , 1984 .

[28]  Friedrich Biegler-König,et al.  Calculation of the average properties of atoms in molecules. II , 1982 .

[29]  Gerald V. Gibbs,et al.  Molecules as models for bonding in silicates , 1982 .

[30]  R. Bader,et al.  Calculation of the average properties of atoms in molecules. II , 1981 .

[31]  G. V. Gibbs,et al.  The use of molecular‐orbital calculations on model systems for the prediction of bridging‐bond‐angle variations in siloxanes, silicates, silicon nitrides and silicon suffides , 1978 .

[32]  R. J. Hill,et al.  Tetrahedral bond length and angle variations in germanates , 1977 .

[33]  I. Brown,et al.  Empirical bond-strength–bond-length curves for oxides , 1973 .

[34]  E. G. Ehlers,et al.  Ternary Phases in the System MgO‐GeO2‐LiF , 1967 .

[35]  G. R. McCormick Subsolidus Equilibria in the System MgO–GeO2–MgF2 , 1966 .

[36]  R. Gillespie Bond Angles and the Spatial Correlation of Electrons1 , 1960 .

[37]  J. R. Goldsmith Gallium and Germanium Substitutions in Synthetic Feldspars , 1950, The Journal of Geology.

[38]  Hamburger SynchrotronstrahlungslaborHASYLAB Bond angle distribution in amorphous germania and silica , 1996 .

[39]  Æleen Frisch,et al.  Exploring chemistry with electronic structure methods , 1996 .

[40]  F. Nishi,et al.  The nature and the variation of Ge – O bonding in germanates , 1992 .

[41]  J. W. Downs Electrostatic Properties of Minerals from X-Ray Diffraction Data: A Guide for Accurate Atomistic Models , 1991 .

[42]  D. Cremer,et al.  Chemical Implication of Local Features of the Electron Density Distribution , 1990 .

[43]  G. V. Gibbs,et al.  A modeling of the coesite and feldspar framework structure types of silica as a function of pressure using modified electron gas methods , 1988 .

[44]  Z. Maksić,et al.  Modelling of structure and properties of molecules , 1987 .

[45]  Mark A. Spackman,et al.  Atomic charges and electron density partitioning , 1985 .

[46]  Elfi Kraka,et al.  A Description of the Chemical Bond in Terms of Local Properties of Electron Density and Energy , 1984 .

[47]  M. Newton,et al.  9 – A Comparison of Experimental and Theoretical Bond Length and Angle Variations for Minerals, Inorganic Solids, and Molecules , 1981 .

[48]  S. Iwai,et al.  The crystal structures of germanate micas, KMg2.5Ge4O10F2and KLiMg2Ge4O10F2 , 1978 .

[49]  B. Jerslev Effective Ionic Radii in Oxides and Fluorides* , 1969 .

[50]  L. Pauling The Nature Of The Chemical Bond , 1939 .