Current status and future of photorefractive polymers for photonic applications

Photorefractive polymer are emerging as promising photonic materials for a variety of applications including holographic storage, real-time optical processing, imaging, nondestructive testing, and phase conjugation. These materials combine the low cost and ease of processing of polymers with the highly sensitive optical encoding mechanism of photorefractive materials in general. This paper will introduce the basic concepts of photorefractivity, organic nonlinear optical materials, and amorphous organic photoconductors. Then we will review the physics and the chemistiy of photorefractive polymers and give a survey of different classes of materials that have been proposed during the relatively short history of organic photorefractive materials. Finally, we will discuss some of the potential and future challenges of these materials in the context of photonic applications.

[1]  P. Borsenberger,et al.  Electron transport in acceptor doped polymers: The role of group dipole moments , 1995 .

[2]  W. E. Moerner,et al.  Poly(silane)-based high-mobility photorefractive polymers , 1993 .

[3]  Nasser N Peyghambarian,et al.  Highly efficient photorefractive polymers for dynamic holography , 1995 .

[4]  D. Kokron,et al.  Launching of guided waves in a photorefractive polymer by two-beam coupling. , 1995, Optics letters.

[5]  Nasser N Peyghambarian,et al.  CHROMOPHORE DESIGN FOR PHOTOREFRACTIVE APPLICATIONS , 1997 .

[6]  Scott,et al.  Observation of the photorefractive effect in a polymer. , 1991, Physical review letters.

[7]  G. Hadziioannou,et al.  The role of absorbing nonlinear optical chromophores in photorefractive polymers , 1994 .

[8]  P. Borsenberger,et al.  Electron transport in vapor deposited molecular glasses: the role of group dipole moments , 1995 .

[9]  Nasser N Peyghambarian,et al.  New highly efficient photorefractive polymer composite for optical-storage and image-processing applications , 1993 .

[10]  Kurt Sutter,et al.  Photorefractive gratings in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane , 1990, Optics & Photonics.

[11]  E. H. Magin,et al.  Electron-transport in vapor-deposited layers of 2-methyl-2-pentyl-1,3-bis(dicyanomethylene)indane , 1994 .

[12]  David J. Williams,et al.  Photorefractive effect in a new organic system of doped nonlinear polymer , 1992 .

[13]  Paul M. Borsenberger,et al.  The role of disorder on charge transport in molecularly doped polymers and related materials , 1993 .

[14]  Paul M. Borsenberger,et al.  Electron Transport in Vapor Deposited Molecular Glasses , 1994 .

[15]  Lei Zhang,et al.  Electric-field stabilization and competition of gratings in a photorefractive polymer. , 1993, Optics letters.

[16]  Paul M. Borsenberger,et al.  Hole Transport in a Vapor Deposited Phenylenediamine Molecular Glass , 1995 .

[17]  B. Javidi,et al.  A polymeric optical pattern-recognition system for security verification , 1996, Nature.

[18]  J. Kumar,et al.  Photorefractive effect in a conjugated polymer based material , 1996 .

[19]  I. Khoo,et al.  Observation of orientational photorefractive effects in nematic liquid crystals. , 1994, Optics letters.

[20]  Yue Zhang,et al.  Bifunctional chromophore for photorefractive applications , 1995 .

[21]  H. Bässler,et al.  Tail broadening of photocurrent transients in molecularly doped polymers , 1994 .

[22]  A. M. Cox,et al.  Crystallization‐resistant photorefractive polymer composite with high diffraction efficiency and reproducibility , 1996 .

[23]  Hall,et al.  Photorefractivity in a functional side-chain polymer. , 1993, Physical review. B, Condensed matter.

[24]  K. Yokoyama,et al.  Large photorefractive effect in a thermally decomposed polymer compared with that in molecularly doped systems , 1994 .

[25]  Alain Brun,et al.  New nonlinear sol-gel films exhibiting photorefractivity , 1996 .

[26]  W E Moerner,et al.  Subsecond grating growth in a photorefractive polymer. , 1992, Optics letters.

[27]  Paul M. Borsenberger,et al.  Electron transport in 2-t-butyl-9,10-N,N'-dicyanoanthraquinonediimine-doped polymers , 1994 .

[28]  Prasad,et al.  Observation of photorefractivity in a fullerene-doped polymer composite. , 1992, Physical review. B, Condensed matter.

[29]  Peter Strohriegl,et al.  A polysiloxane‐based photorefractive polymer with high optical gain and diffraction efficiency* , 1995 .

[30]  Michael R. Wasielewski,et al.  High Photorefractive Gain in Nematic Liquid Crystals Doped with Electron Donor and Acceptor Molecules , 1995, Science.

[31]  Luping Yu,et al.  Conjugated photorefractive polymer , 1994 .

[32]  Yue Zhang,et al.  Photorefractive composites with high‐band‐gap second‐order nonlinear optical chromophores , 1995 .

[33]  Zhenan Bao,et al.  Photorefractive polymers. 2. Structure design and property characterization , 1993 .

[34]  P. Borsenberger,et al.  High-Mobility Doped Polymers , 1995 .

[35]  Nasser N Peyghambarian,et al.  Improved long-term stability of high-performance photorefractive polymer devices , 1996, Optics & Photonics.

[36]  Mark G. Kuzyk,et al.  Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties , 1987 .

[37]  G. D. Boyd,et al.  OPTICALLY‐INDUCED REFRACTIVE INDEX INHOMOGENEITIES IN LiNbO3 AND LiTaO3 , 1966 .

[38]  Yue Zhang,et al.  Photorefractive composite materials with bi‐functional charge transporting second‐order nonlinear optical chromophores , 1996 .