Admissible Rules: From Characterizations to Applications

The admissible rules of a logic (understood as a structural consequence relation) may be described as rules that can be added to the logic without producing any new theorems, or, equivalently, as rules such that any substitution making the premises into theorems, also makes the conclusion into a theorem. However, this equivalence collapses once multiple-conclusion or other, more exotic, admissible rules are considered. The first aim of this paper is to explain how such distinctions can be explained and characterized. The second aim is to explore how these rules can be useful in determining properties of classes of algebras.

[1]  Silvio Ghilardi,et al.  A Resolution/Tableaux Algorithm for Projective Approximations in IPC , 2002, Log. J. IGPL.

[2]  Vladimir V. Rybakov,et al.  Admissibility of Logical Inference Rules , 2011 .

[3]  George Metcalfe,et al.  Proof Theory of Mathematical Fuzzy Logic , 2011 .

[4]  Matthias Baaz,et al.  Hypersequent and the Proof Theory of Intuitionistic Fuzzy Logic , 2000, CSL.

[5]  Arnon Avron,et al.  A constructive analysis of RM , 1987, Journal of Symbolic Logic.

[6]  Renate A. Schmidt,et al.  A Tableau Method for Checking Rule Admissibility in S4 , 2010, M4M.

[7]  P. Lorenzen Einführung in die operative Logik und Mathematik , 1955 .

[8]  H. Ono,et al.  Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Volume 151 , 2007 .

[9]  D. Gabbay,et al.  Proof Theory for Fuzzy Logics , 2008 .

[10]  Silvio Ghilardi,et al.  Unification in intuitionistic logic , 1999, Journal of Symbolic Logic.

[11]  Franco Montagna,et al.  Substructural fuzzy logics , 2007, Journal of Symbolic Logic.

[12]  Satoko Titani,et al.  Intuitionistic fuzzy logic and intuitionistic fuzzy set theory , 1984, Journal of Symbolic Logic.

[13]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[14]  Emil Jerábek,et al.  Admissible Rules of Modal Logics , 2005, J. Log. Comput..

[15]  Paul Rozi admissible and derivable rules in intuitionistic logic , 1993 .

[16]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[17]  Agata Ciabattoni,et al.  Density elimination , 2008, Theor. Comput. Sci..

[18]  Emil Jerábek,et al.  Bases of Admissible Rules of Lukasiewicz Logic , 2010, J. Log. Comput..

[19]  Anuj Dawar,et al.  How the World Computes , 2012, Lecture Notes in Computer Science.

[20]  L. Santocanale,et al.  Free μ-lattices , 2000 .

[21]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[22]  George Metcalfe,et al.  Unifiability and Admissibility in Finite Algebras , 2012, CiE.

[23]  Alex K. Simpson,et al.  Computational Adequacy in an Elementary Topos , 1998, CSL.

[24]  Rosalie Iemho On the Admissible Rules of Intuitionistic Propositional Logic , 2008 .

[25]  Rosalie Iemhoff,et al.  Proof theory for admissible rules , 2009, Ann. Pure Appl. Log..

[26]  G. Gentzen Untersuchungen über das logische Schließen. II , 1935 .

[27]  Paul Rozière,et al.  Admissible and derivable rules in intuitionistic logic , 1993, Mathematical Structures in Computer Science.

[28]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[29]  Emil Jerábek Admissible Rules of Lukasiewicz Logic , 2010, J. Log. Comput..

[30]  Silvio Ghilardi,et al.  Best Solving Modal Equations , 2000, Ann. Pure Appl. Log..

[31]  Rosalie Iemhoff,et al.  Intermediate Logics and Visser's Rules , 2005, Notre Dame J. Formal Log..

[32]  Petr Cintula,et al.  Admissible rules in the implication-negation fragment of intuitionistic logic , 2010, Ann. Pure Appl. Log..