Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A

Bioleaching of metal sulfides is performed by a diverse group of microorganisms. The dissolution chemistry of metal sulfides follows two pathways, which are determined by the mineralogy and the acid solubility of the metal sulfides: the thiosulfate and the polysulfide pathways. Bacterial cells can effect this metal sulfide dissolution via iron(II) ion and sulfur compound oxidation. Thereby, iron(III) ions and protons, the metal sulfide-attacking agents, are available. Cells can be active either in planktonic state or in forming biofilms on the mineral surface; however, the latter is much more efficient in terms of bioleaching kinetics. In the case of Acidithiobacillus ferrooxidans, bacterial exopolymers contain iron(III) ions, each complexed by two uronic acid residues. The resulting positive charge allows an electrostatic attachment to the negatively charged pyrite. Thus, the first function of complexed iron(III) ions is the mediation of cell attachment, while their second function is oxidative dissolution of the metal sulfide, similar to the role of free iron(III) ions in non-contact leaching. In both cases, the electrons extracted from the metal sulfide reduce molecular oxygen via a redox chain forming a supercomplex spanning the periplasmic space and connecting both outer and inner membranes. In this review, we summarize some recent discoveries relevant to leaching bacteria which contribute to a better understanding of these fascinating microorganisms. These include surface science, biochemistry of iron and sulfur metabolism, anaerobic metabolism, and biofilm formation. The study of microbial interactions among multispecies leaching consortia, including cell-to-cell communication mechanisms, must be considered in order to reveal more insights into the biology of bioleaching microorganisms and their potential biotechnological use.

[1]  Mark A. Williamson,et al.  The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation , 1994 .

[2]  J. Mobarec,et al.  Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals. , 2010, Biotechnology advances.

[3]  Shrihari,et al.  Dissolution of particles of pyrite mineral by direct attachment of Thiobacillus ferrooxidans , 1995 .

[4]  D. Haras,et al.  Evidence for a Functional Quorum-Sensing Type AI-1 System in the Extremophilic Bacterium Acidithiobacillus ferrooxidans , 2005, Applied and Environmental Microbiology.

[5]  W. Sand,et al.  Large-scale experiments for microbiological evaluation of measures for safeguarding sulfidic mine waste. , 2001, Waste management.

[6]  F. Crundwell,et al.  Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Experiments with a Controlled Redox Potential Indicate No Direct Bacterial Mechanism , 1998, Applied and Environmental Microbiology.

[7]  W. Sand,et al.  Evaluation of Leptospirillum ferrooxidans for Leaching , 1992, Applied and environmental microbiology.

[8]  R. Blake,et al.  Solubilization of Minerals by Bacteria: Electrophoretic Mobility of Thiobacillus ferrooxidans in the Presence of Iron, Pyrite, and Sulfur , 1994, Applied and environmental microbiology.

[9]  B. Mayer,et al.  Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur , 2012 .

[10]  W. Sand,et al.  (Bio)chemistry of bacterial leaching - direct vs. indirect bioleaching , 2001 .

[11]  G. Brasseur,et al.  Cytochromes c of Acidithiobacillus ferrooxidans. , 2002, FEMS microbiology letters.

[12]  Yong Xu,et al.  The absolute energy positions of conduction and valence bands of selected semiconducting minerals , 2000 .

[13]  H. Tributsch,et al.  Semiconductor-electrochemical aspects of bacterial leaching. I. Oxidation of metal sulphides with large energy gaps: Semiconductor-electrochemical aspects of bacterial leaching , 1981 .

[14]  Cindy J. Castelle,et al.  A New Iron-oxidizing/O2-reducing Supercomplex Spanning Both Inner and Outer Membranes, Isolated from the Extreme Acidophile Acidithiobacillus ferrooxidans* , 2008, Journal of Biological Chemistry.

[15]  V. Evangelou Pyrite oxidation and its control , 1995 .

[16]  W. Sand,et al.  Bacterial Leaching of Metal Sulfides Proceeds by Two Indirect Mechanisms via Thiosulfate or via Polysulfides and Sulfur , 1999, Applied and Environmental Microbiology.

[17]  W. Sand,et al.  Sulfur chemistry, biofilm, and the (in)direct attack mechanism — a critical evaluation of bacterial leaching , 1995, Applied Microbiology and Biotechnology.

[18]  W. Sand,et al.  The EPS of Acidithiobacillus ferrooxidans--a model for structure-function relationships of attached bacteria and their physiology. , 2001, Water science and technology : a journal of the International Association on Water Pollution Research.

[19]  W. Sand,et al.  Intermediary sulfur compounds in pyrite oxidation: implications for bioleaching and biodepyritization of coal , 1999, Applied Microbiology and Biotechnology.

[20]  P. Norris,et al.  Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. , 1996, Microbiology.

[21]  D. Barrie Johnson,et al.  Ferredox: A biohydrometallurgical processing concept for limonitic nickel laterites , 2011 .

[22]  D. Holmes,et al.  Anaerobic Sulfur Metabolism Coupled to Dissimilatory Iron Reduction in the Extremophile Acidithiobacillus ferrooxidans , 2013, Applied and Environmental Microbiology.

[23]  Carla M. Zammit,et al.  Bioleaching in brackish waters—effect of chloride ions on the acidophile population and proteomes of model species , 2011, Applied Microbiology and Biotechnology.

[24]  D. Kelly,et al.  Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. , 2000, International journal of systematic and evolutionary microbiology.

[25]  Banfield,et al.  Distribution of thiobacillus ferrooxidans and leptospirillum ferrooxidans: implications for generation of acid mine drainage , 1998, Science.

[26]  H. Tributsch,et al.  Semiconductor‐electrochemical aspects of bacterial leaching. I. Oxidation of metal sulphides with large energy gaps , 2007 .

[27]  P. Holmes,et al.  Mechanism of Pyrite Dissolution in the Presence ofThiobacillus ferrooxidans , 1999, Applied and Environmental Microbiology.

[28]  H. Tributsch,et al.  Semiconductor-electrochemical aspects of bacterial leaching. Part 2. Survey of rate-controlling sulphide properties: Aspects of bacterial leaching , 1981 .

[29]  W. Skinner,et al.  The role of surface sulfur species in the inhibition of pyrrhotite dissolution in acid conditions , 1998 .

[30]  M. Boon,et al.  The Mechanism and Kinetics of Bioleaching Sulphide Minerals , 1998 .

[31]  W. Achouak,et al.  Enzyme-Linked Immunofiltration Assay To Estimate Attachment of Thiobacilli to Pyrite , 1998, Applied and Environmental Microbiology.

[32]  W. Sand,et al.  Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans , 2006 .

[33]  Fernando A Pagliai,et al.  The Chemolithoautotroph Acidithiobacillus ferrooxidans Can Survive under Phosphate-Limiting Conditions by Expressing a C-P Lyase Operon That Allows It To Grow on Phosphonates , 2008, Applied and Environmental Microbiology.

[34]  D. Nordstrom Aqueous Pyrite Oxidation and the Consequent Formation of Secondary Iron Minerals , 2015 .

[35]  D. Rawlings,et al.  Heavy metal mining using microbes. , 2002, Annual review of microbiology.

[36]  B. Mayer,et al.  Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite , 2007 .

[37]  C. Brochier-Armanet,et al.  Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways. , 2011, Microbiology.

[38]  Amitabha Das,et al.  Anaerobic growth on elemental sulfur using dissimilar iron reduction by autotrophic Thiobacillus ferrooxidans , 1992 .

[39]  D Barrie Johnson,et al.  Acid mine drainage remediation options: a review. , 2005, The Science of the total environment.

[40]  H. Flemming,et al.  The biofilm matrix , 2010, Nature Reviews Microbiology.

[41]  C. D. Plessis,et al.  Reductive dissolution of ferric iron minerals: A new approach for bio-processing nickel laterites , 2011 .

[42]  A. Schippers,et al.  The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria , 2010 .

[43]  M. Dopson,et al.  Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. , 2012, Environmental microbiology.

[44]  J. Craig,et al.  Mineral chemistry of metal sulfides , 1978 .

[45]  H. Toledo,et al.  Chemotaxis of Leptospirillum ferrooxidans and other acidophilic chemolithotrophs: comparison with the Escherichia coli chemosensory system. , 1992, FEMS microbiology letters.

[46]  Violaine Bonnefoy,et al.  Characterization of an Operon Encoding Two c-Type Cytochromes, an aa3-Type Cytochrome Oxidase, and Rusticyanin in Thiobacillus ferrooxidansATCC 33020 , 1999, Applied and Environmental Microbiology.

[47]  J. Banfield,et al.  Posttranslational modification and sequence variation of redox-active proteins correlate with biofilm life cycle in natural microbial communities , 2010, The ISME Journal.

[48]  G. Andrews The selective adsorption of Thiobacilli to dislocation sites on pyrite surfaces. , 1988, Biotechnology and bioengineering.

[49]  R. Blake,et al.  In situ Spectroscopy on Intact Leptospirillum ferrooxidans Reveals that Reduced Cytochrome 579 is an Obligatory Intermediate in the Aerobic Iron Respiratory Chain , 2012, Front. Microbio..

[50]  W. Sand,et al.  Physiological characteristics of thiobacillus ferrooxidans and leptospirillum ferrooxidans and physicochemical factors influence microbial metal leaching , 1992 .

[51]  Cindy J. Castelle,et al.  An Unconventional Copper Protein Required for Cytochrome c Oxidase Respiratory Function under Extreme Acidic Conditions , 2010, The Journal of Biological Chemistry.

[52]  S. Takaichi,et al.  Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov. , 1998, International journal of systematic bacteriology.

[53]  E. González-Toril,et al.  Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments , 2009, Extremophiles.

[54]  G. Olson,et al.  Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. , 2003, Applied microbiology and biotechnology.

[55]  J. Rimstidt,et al.  Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism , 2003 .

[56]  H. Tributsch,et al.  Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. , 1999, Microbiology.

[57]  W. Sand,et al.  Shotgun proteomics study of early biofilm formation process of Acidithiobacillus ferrooxidans ATCC 23270 on pyrite , 2013, Proteomics.

[58]  A. Orell,et al.  Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism. , 2006, Microbiology.

[59]  R. Amils,et al.  The HiPIP from the acidophilic Acidithiobacillus ferrooxidans is correctly processed and translocated in Escherichia coli, in spite of the periplasm pH difference between these two micro-organisms. , 2005, Microbiology.

[60]  M. Sitnikova,et al.  Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile. , 2013, Environmental science & technology.

[61]  G. Druschel,et al.  Comment on “Pyrite dissolution in acidic media” by M. Descostes, P. Vitorge, and C. Beaucaire , 2006 .

[62]  A. Schippers,et al.  Biogeochemistry of metal sulfide oxidation in mining environments, sediments, and soils , 2004 .

[63]  V. Bonnefoy,et al.  Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. , 2004, Microbiology.

[64]  Douglas E. Rawlings,et al.  Biomining : Theory, Microbes and Industrial Processes , 2006 .

[65]  W. Sand,et al.  Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching , 1998, Applied and Environmental Microbiology.

[66]  F. Crundwell The influence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals , 1988 .

[67]  W. Sand,et al.  Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. , 2003, Applied microbiology and biotechnology.

[68]  D. Kirchman,et al.  Attachment Stimulates Exopolysaccharide Synthesis by a Bacterium , 1993, Applied and environmental microbiology.

[69]  P. Vitorge,et al.  Pyrite dissolution in acidic media , 2004 .

[70]  Carlos A. Jerez,et al.  Copper Ions Stimulate Polyphosphate Degradation and Phosphate Efflux in Acidithiobacillus ferrooxidans , 2004, Applied and Environmental Microbiology.

[71]  O. Tuovinen,et al.  Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks , 2002 .

[72]  W. Sand,et al.  The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. , 2003, Microbiology.

[73]  M. Dopson,et al.  Gene Identification and Substrate Regulation Provide Insights into Sulfur Accumulation during Bioleaching with the Psychrotolerant Acidophile Acidithiobacillus ferrivorans , 2012, Applied and Environmental Microbiology.

[74]  P. Norris,et al.  Acidophiles in bioreactor mineral processing , 2000, Extremophiles.

[75]  J. Banfield,et al.  Comparison of Acid Mine Drainage Microbial Communities in Physically and Geochemically Distinct Ecosystems , 2000, Applied and Environmental Microbiology.

[76]  W. Sand,et al.  Long-term evaluation of acid rock drainage mitigation measures in large lysimeters , 2007 .

[77]  C. Mustin,et al.  Surface sulphur as promoting agent of pyrite leaching by Thiobacillus ferrooxidans , 1993 .

[78]  T. Vargas,et al.  Novel electrochemical-enzymatic model which quantifies the effect of the solution Eh on the kinetics of ferrous iron oxidation with Acidithiobacillus ferrooxidans. , 2002, Biotechnology and bioengineering.

[79]  M. Sampson,et al.  Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides , 2000 .

[80]  A. Myerson,et al.  The adsorption of Thiobacillus ferrooxidans on coal surfaces , 1986, Biotechnology and bioengineering.

[81]  A. Hiraishi,et al.  Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments. , 2000, International journal of systematic and evolutionary microbiology.

[82]  D. Johnson,et al.  Redox Transformations of Iron at Extremely Low pH: Fundamental and Applied Aspects , 2012, Front. Microbio..

[83]  P. Singer,et al.  Acidic Mine Drainage: The Rate-Determining Step , 1970, Science.

[84]  D. Holmes,et al.  Draft Genome of the Psychrotolerant Acidophile Acidithiobacillus ferrivorans SS3 , 2011, Journal of bacteriology.

[85]  D. Nordstrom,et al.  Initiation of aqueous pyrite oxidation by dissolved oxygen and by ferric iron , 1987 .

[86]  S. Lower,et al.  Thickness and Surface Density of Extracellular Polymers on Acidithiobacillus ferrooxidans , 2007, Applied and Environmental Microbiology.

[87]  H. Tributsch,et al.  Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite , 1988, Archives of Microbiology.

[88]  J. A. King,et al.  Passivation of chalcopyrite during oxidative leaching in sulfate media , 1995 .

[89]  D. B. Johnson Geomicrobiology of extremely acidic subsurface environments. , 2012, FEMS microbiology ecology.

[90]  R. Amils,et al.  Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties , 1999 .

[91]  D. Johnson,et al.  Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizer of the family Ectothiorhodospiraceae , 2011, Extremophiles.

[92]  J. Rubio,et al.  Interfacial phenomena affecting the adhesion of Thiobacillus ferrooxidans to sulphide mineral surface , 1992 .

[93]  C. Navarro,et al.  Inorganic polyphosphates in extremophiles and their possible functions , 2012, Extremophiles.

[94]  H. Saiki,et al.  Anaerobic Respiration Using Fe3+, S0, and H2 in the Chemolithoautotrophic Bacterium Acidithiobacillus ferrooxidans , 2002, Journal of bacteriology.

[95]  D. Boxer,et al.  The purification and some properties of rusticyanin, a blue copper protein involved in iron(II) oxidation from Thiobacillus ferro-oxidans. , 1978, The Biochemical journal.

[96]  K. Timmis,et al.  Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. , 2000, International journal of systematic and evolutionary microbiology.

[97]  Patrick Giraudoux,et al.  Proceedings of the International Symposium , 2014, Parasite.

[98]  A. Hiraishi,et al.  Aerobic anoxygenic photosynthetic bacteria with zinc-bacteriochlorophyll. , 2001, The Journal of general and applied microbiology.

[99]  K. Bosecker,et al.  Bioleaching: metal solubilization by microorganisms , 1997 .

[100]  A. P. Harrison Genomic and physiological diversity amongst strains of Thiobacillus ferrooxidans, and genomic comparison with Thiobacillus thiooxidans , 1982, Archives of Microbiology.

[101]  G. Rossi Biodepyritization of coal: achievements and problems , 1993 .

[102]  W. Sand,et al.  Visualization of capsular polysaccharide induction in Acidithiobacillus ferrooxidans , 2012 .

[103]  C. Jerez,et al.  Proteomic and genomic analysis of the phosphate starvation response of Acidithiobacillus ferrooxidans , 2003 .

[104]  W. Skinner,et al.  SIMS studies of oxidation mechanisms and polysulfide formation in reacted sulfide surfaces , 2000 .

[105]  W. Sand,et al.  Bioleaching review part A: , 2003, Applied Microbiology and Biotechnology.

[106]  W. Shanks,et al.  Laboratory chalcopyrite oxidation by Acidithiobacillus ferrooxidans: Oxygen and sulfur isotope fractionation , 2010 .

[107]  Banfield,et al.  A new look at microbial leaching patterns on sulfide minerals. , 2001, FEMS microbiology ecology.

[108]  R. Borg,et al.  The physical chemistry of solids , 1991 .

[109]  K. Lund,et al.  The High-Molecular-Weight Cytochrome c Cyc2 of Acidithiobacillus ferrooxidans Is an Outer Membrane Protein , 2002, Journal of bacteriology.

[110]  J. Banfield,et al.  Kinetics, surface chemistry, and structural evolution of microbially mediated sulfide mineral dissolution , 2001 .

[111]  G. S. Hansford Recent Developments in Modeling the Kinetics of Bioleaching , 1997 .

[112]  C. Jerez,et al.  The extremophile Acidithiobacillus ferrooxidans possesses a c‐di‐GMP signalling pathway that could play a significant role during bioleaching of minerals , 2012, Letters in applied microbiology.

[113]  W. Sand,et al.  AHL communication is a widespread phenomenon in biomining bacteria and seems to be involved in mineral-adhesion efficiency , 2008 .

[114]  W. Sand,et al.  AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans , 2013, Applied Microbiology and Biotechnology.

[115]  O. Tuovinen,et al.  Sorption of Thiobacillus ferrooxidans to particulate material. , 1983, Biotechnology and bioengineering.

[116]  R. Lowson Aqueous oxidation of pyrite by molecular oxygen , 1982 .

[117]  P. Bos,et al.  Anaerobic Growth of Thiobacillus ferrooxidans , 1992, Applied and environmental microbiology.

[118]  A. Stuchebrukhov,et al.  DNA repair mechanism by photolyase: electron transfer path from the photolyase catalytic cofactor FADH(-) to DNA thymine dimer. , 2001, Journal of theoretical biology.

[119]  G. Luther Pyrite oxidation and reduction - Molecular orbital theory considerations. [for geochemical redox processes] , 1987 .

[120]  W. Skinner,et al.  A mechanism to explain sudden changes in rates and products for pyrrhotite dissolution in acid solution , 2001 .

[121]  Raquel Quatrini,et al.  Extending the models for iron and sulfur oxidation in the extreme Acidophile Acidithiobacillus ferrooxidans , 2009, BMC Genomics.

[122]  Derek R. Lovley,et al.  Outer Cell Surface Components Essential for Fe(III) Oxide Reduction by Geobacter metallireducens , 2012, Applied and Environmental Microbiology.

[123]  H. Tributsch,et al.  Semiconductor‐electrochemical aspects of bacterial leaching. Part 2. Survey of rate‐controlling sulphide properties , 2007 .

[124]  N. Ohmura,et al.  Selective Adhesion of Thiobacillus ferrooxidans to Pyrite , 1993, Applied and environmental microbiology.

[125]  H. Tributsch Direct versus indirect bioleaching , 2001 .

[126]  J. Banfield,et al.  An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. , 2000, Science.

[127]  J. E. Dutrizac,et al.  Ferric ion as a leaching medium , 1974 .

[128]  D. Holmes,et al.  Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. , 2012, Environmental microbiology.

[129]  M. Schlömann,et al.  The iron-oxidizing proteobacteria. , 2011, Microbiology.

[130]  W. Ingledew,et al.  A potentiometric and kinetic study on the respiratory chain of ferrous-iron-grown Thiobacillus ferrooxidans. , 1980, Biochimica et biophysica acta.

[131]  W. Sand,et al.  Sulfur chemistry in bacterial leaching of pyrite , 1996, Applied and environmental microbiology.