Batoniite, [Al8(OH)14(H2O)18](SO4)5  ⋅  5H2O, a new mineral with the [Al8(OH)14(H2O)18]10+ polyoxocation from the Cetine di Cotorniano Mine, Tuscany, Italy

Abstract. The new mineral batoniite, [Al8(OH)14(H2O)18](SO4)5 ⋅ 5H2O, was discovered in the Cetine di Cotorniano Mine, Chiusdino, Siena, Tuscany, Italy. It occurs as hemispherical aggregates composed of brittle tabular crystals, up to 1 mm in size, white to colorless in color, with a white streak and a vitreous to greasy luster. Batoniite is biaxial negative, with α= 1.4833(6), β= 1.4948(6), γ= 1.5019(5) (589 nm), and 2V(meas.)= 71(1)∘. Electron microprobe analysis, affected by the dehydration of batoniite under the chamber vacuum, gave (in wt %) the following: Al2O3 33.48, Fe2O3 0.05, SO3 33.00, and H2Ocalc 44.41, total 110.94. It corresponds to the chemical formula (Al7.98Fe0.013+)Σ7.99(SO4)5.01(OH)13.95(H2O)18 ⋅ 5H2O. Batoniite is triclinic, belonging to space group P1‾, with a= 9.1757(6), b= 12.0886(9), c= 20.9218(15) Å, α= 82.901(3), β= 87.334(3), γ= 86.999(2)∘, V= 2297.8(3) Å3, and Z= 2. The crystal structure was refined to R1= 0.0916 for 8118 unique reflections with Fo>4σ(Fo) and 811 refined parameters and 60 restraints. Batoniite is characterized by isolated [Al8(OH)14(H2O)18]10+ polyoxocations, H-bonded to five interstitial (SO4)2− and five H2O groups. In type material, it is associated with gypsum and a poorly crystallized Al–Fe sulfate. The crystallization of batoniite is probably due to the action of H2SO4 on Al-bearing rocks of Paleozoic age cropping out in the Garibaldi Tunnel, the lowest mining level of the Cetine di Cotorniano Mine.

[1]  C. Biagioni,et al.  New Crystal-Structure Data on Bohuslavite, Fe3+4(PO4)3(SO4)(OH)(H2O)10·nH2O , 2023, Minerals.

[2]  A. Brogi,et al.  GEOTHERMAL SYSTEMS IN THE NORTHERN APENNINES, ITALY: MODERN ANALOGUES OF CARLIN-STYLE GOLD DEPOSITS , 2021 .

[3]  John M. Hughes,et al.  Protocaseyite, a new decavanadate mineral containing a [Al4(OH)6(H2O)12]6+ linear tetramer, a novel isopolycation , 2021, American Mineralogist.

[4]  C. Biagioni,et al.  Sulfates from the Pyrite Ore Deposits of the Apuan Alps (Tuscany, Italy): A Review , 2020 .

[5]  C. Biagioni,et al.  Crystal-chemistry of sulfates from the Apuan Alps, Tuscany, Italy. VIII. New data on khademite, Al(SO4)F(H2O)5 , 2020, Mineralogical Magazine.

[6]  L. Bindi,et al.  Crystal-chemistry of sulfates from the Apuan Alps (Tuscany, Italy). IV. Giacovazzoite, K5Fe3+3O(SO4)6(H2O)9·H2O, the natural analogue of the β-Maus’s Salt and its dehydration product , 2020, Physics and Chemistry of Minerals.

[7]  John M. Hughes,et al.  Caseyite, a new mineral containing a variant of the flat-Al13 polyoxometalate cation , 2019 .

[8]  L. Bindi,et al.  Crystal-Chemistry of Sulfates from the Apuan Alps (Tuscany, Italy). VII. Magnanelliite, K3Fe3+2(SO4)4 (OH)(H2O)2, a New Sulfate from the Monte Arsiccio Mine , 2019, Minerals.

[9]  L. Bindi,et al.  Crystal Chemistry of Sulfates from the Apuan Alps (Tuscany, Italy). V. Scordariite, K8(Fe3+0.67□0.33)[Fe3+3O(SO4)6(H2O)3]2(H2O)11: A New Metavoltine-Related Mineral , 2019, Minerals.

[10]  E. Bonaccorsi,et al.  Bohuslavite, Fe 4 3 + (PO4)3(SO4)(OH)(H2O)10·nH2O, a new hydrated iron phosphate-sulfate , 2019 .

[11]  C. Biagioni,et al.  Tiberiobardiite, Cu9Al(SiO3OH)2(OH)12(H2O)6(SO4)1.5·10H2O, a New Mineral Related to Chalcophyllite from the Cretaio Cu Prospect, Massa Marittima, Grosseto (Tuscany, Italy): Occurrence and Crystal Structure , 2018 .

[12]  W. Casey,et al.  Synthesis of an Aluminum Hydroxide Octamer through a Simple Dissolution Method. , 2017, Angewandte Chemie.

[13]  L. Bindi,et al.  A multimethodic approach for the characterization of manganiceladonite, a new member of the celadonite family from Cerchiara mine, Eastern Liguria, Italy , 2017, Mineralogical Magazine.

[14]  V. Kahlenberg,et al.  Temperature- and moisture-dependent studies on alunogen and the crystal structure of meta-alunogen determined from laboratory powder diffraction data , 2016, Physics and Chemistry of Minerals.

[15]  N. Chukanov,et al.  Riotintoite, Al(SO4)(OH)·3H2O, A New Mineral From La Vendida Copper Mine, Antofagasta Region, Chile , 2016 .

[16]  Alian Wang,et al.  The stability of sulfate and hydrated sulfate minerals near ambient conditions and their significance in environmental and planetary sciences , 2013 .

[17]  S. Palmer,et al.  A vibrational spectroscopic study of hydrated Fe(3+) hydroxyl-sulfates; polymorphic minerals butlerite and parabutlerite. , 2011, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[18]  A. Pring,et al.  Alunite supergroup: recommended nomenclature , 2010, Mineralogical Magazine.

[19]  Dorian G. W. Smith,et al.  A SYSTEM OF CODIFICATION FOR UNNAMED MINERALS: REPORT OF THE SUBCOMMITTEE FOR UNNAMED MINERALS OF THE IMA COMMISSION ON NEW MINERALS, NOMENCLATURE AND CLASSIFICATION , 2007 .

[20]  W. Casey,et al.  A new aluminum hydroxide octamer, [Al8(OH)14(H2O)18](SO4)5 x 16H2O. , 2005, Inorganic chemistry.

[21]  G. Breit,et al.  Origin of secondary sulfate minerals on active andesitic stratovolcanoes , 2005 .

[22]  M. Schindler,et al.  A BOND-VALENCE APPROACH TO THE STRUCTURE, CHEMISTRY AND PARAGENESIS OF HYDROXY-HYDRATED OXYSALT MINERALS. I. THEORY , 2001 .

[23]  P. Lattanzi Epithermal precious metal deposits of Italy–an overview , 1999 .

[24]  K. A. Rodgers,et al.  The nature and significance of sulphate-rich, aluminous efflorescences from the Te Kopia geothermal field, Taupo Volcanic Zone, New Zealand , 1999, Mineralogical Magazine.

[25]  F. Olmi,et al.  Brizziite, NaSbO 3 , a new mineral from the Cetine Mine (Tuscany, Italy); description and crystal structure , 1994 .

[26]  F. Olmi,et al.  Rosenbergite, AlF[F0.5(H2O)0.5]4.H2O, a new mineral from the Cetine mine (Tuscany, Italy): description and crystal structure , 1993 .

[27]  A. E. Schoch,et al.  A new occurrence of the hydrated aluminium sulphate zaherite, from Pofadder, South Africa , 1984, Mineralogical Magazine.

[28]  T. Clayton Hydrobasaluminite and basaluminite from Chickerell, Dorset , 1980, Mineralogical Magazine.

[29]  W. Casey Large aqueous aluminum hydroxide molecules. , 2006, Chemical reviews.

[30]  Satish C. B. Myneni,et al.  X-Ray and Vibrational Spectroscopy of Sulfate in Earth Materials , 2000 .

[31]  S. Krivovichev,et al.  The Crystal Chemistry of Sulfate Minerals , 2000 .

[32]  D. Nordstrom,et al.  Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters , 2000 .

[33]  R. Gruehn,et al.  Beiträge zum thermischen Verhalten von Sulfaten: IX. Einkristallstrukturverfeinerung der Metall(III)-sulfate Cr2(SO4)3 und Al2(SO4)3 , 1993 .

[34]  A. E. Schoch,et al.  Note on Cell Parameters of Zaherite , 1985 .

[35]  C. Sabelli Refinement of the crystal structure of jurbanite, Al(SO4)(OH) · 5H2O , 1985 .

[36]  C. Sabelli Uklonskovite, NaMg(SO4)F.2H2O : new mineralogical data and structure refinement , 1985 .

[37]  P. Werner,et al.  Powder diffraction studies on aluminite and meta-aluminite , 1980 .

[38]  K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds , 1978 .

[39]  G. Belluomini,et al.  Onoratoite, 1 a new antimony oxychloride from Cetine di Cotorniano, Rosia (Siena, Italy) , 1968 .

[40]  H. Bassett,et al.  480. The basic aluminium sulphates , 1949 .