Ultrathin Second‐Harmonic Metasurfaces with Record‐High Nonlinear Optical Response

where ω, n ω , I ω (2 ω, n 2ω , I 2ω ) are the fundamental (secondharmonic) frequency, refractive index, and intensity, respectively, eff (2) χ is the effective nonlinear susceptibility for a particular input–output polarization combination, E ω is the pump electric fi eld, λ 2ω is the second harmonic (SH) wavelength, and we have used the undepleted pump approximation. [ 11,12 ] Equation ( 1) shows that, in order to provide high nonlinear conversion effi ciency in fi lms of subwavelength thickness, we need to have | | eff (2) χ ω E ≈ 1 or, in other words, the nonlinear polarization (2) 0 (1) ε χ = ω ω P E E must become comparable to the linear one

[1]  Tal Ellenbogen,et al.  Nonlinear Beam Shaping with Plasmonic Metasurfaces , 2016 .

[2]  Andrea Alù,et al.  Gradient Nonlinear Pancharatnam-Berry Metasurfaces. , 2015, Physical review letters.

[3]  Sheng Liu,et al.  Phased-array sources based on nonlinear metamaterial nanocavities , 2015, Nature Communications.

[4]  J. S. Gomez-Diaz,et al.  Nonlinear Processes in Multi-Quantum-Well Plasmonic Metasurfaces:Electromagnetic Response, Saturation Effects, Limits and Potentials , 2015, 1506.07095.

[5]  Y. Prior,et al.  Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces , 2015, Nature Communications.

[6]  Tal Ellenbogen,et al.  Controlling light with metamaterial-based nonlinear photonic crystals , 2015, Nature Photonics.

[7]  Andrea Alù,et al.  Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions , 2014, Nature.

[8]  Aiting Jiang,et al.  Broadly tunable terahertz generation in mid-infrared quantum cascade lasers , 2013, Nature Communications.

[9]  Andrea Alù,et al.  Nonlinear plasmonic cloaks to realize giant all-optical scattering switching. , 2012, Physical review letters.

[10]  G. Strasser,et al.  Detectivity enhancement in quantum well infrared photodetectors utilizing a photonic crystal slab resonator. , 2012, Optics express.

[11]  Fow-Sen Choa,et al.  Room-temperature operation of 3.6 μm In0.53Ga 0.47As/Al0.48In0.52 As quantum cascade laser sources based on intracavity second harmonic generation , 2010 .

[12]  Mattias Beck,et al.  Microcavity Laser Oscillating in a Circuit-Based Resonator , 2010, Science.

[13]  M. Wegener,et al.  Second-harmonic generation from split-ring resonators on a GaAs substrate. , 2009, Optics letters.

[14]  V. Gkortsas,et al.  Mode-locked pulses from mid-infrared quantum cascade lasers. , 2009, Optics express.

[15]  J. Pendry,et al.  Time Reversal and Negative Refraction , 2008, Science.

[16]  F. Capasso,et al.  Terahertz Quantum Cascade Laser Source Based on Intra-Cavity Difference-Frequency Generation , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[17]  Shuang Zhang,et al.  Second harmonic generation from patterned GaAs inside a subwavelength metallic hole array. , 2006, Optics express.

[18]  M. Hopkinson,et al.  Phase-matched second harmonic generation in asymmetric double quantum wells , 1998 .

[19]  James S. Harris,et al.  Intersubband absorption saturation study of narrow III - V multiple quantum wells in the spectral range , 1997 .

[20]  Jerry R. Meyer,et al.  Optimized second-harmonic generation in asymmetric double quantum wells , 1996 .

[21]  Andrea Fiore,et al.  Quantum Engineering of Optical Nonlinearities , 1996, Science.

[22]  E. R. Youngdale,et al.  Momentum-space reservoir for enhancement of intersubband second-harmonic generation , 1995 .

[23]  Carlo Sirtori,et al.  Coupled quantum well semiconductors with giant electric field tunable nonlinear optical properties in the infrared , 1994 .

[24]  Y. Kawamura,et al.  Temperature dependence of intersubband absorption in InGaAs/InAlAs multiquantum wells , 1990 .

[25]  Emmanuel Rosencher,et al.  Second harmonic generation by intersub-band transitions in compositionally asymmetrical MQWs , 1989 .

[26]  M. Fejer,et al.  Observation of extremely large quadratic susceptibility at 9.6-10.8 microm in electric-field-biased AlGaAs quantum wells. , 1989, Physical review letters.

[27]  M. Berz,et al.  Inter-sub-band absorption in GaAs/AlGaAs quantum wells between 4.2 K and room temperature , 1988 .

[28]  M. Levenson The principles of nonlinear optics , 1985, IEEE Journal of Quantum Electronics.

[29]  Guixin Li,et al.  University of Birmingham Continuous control of the nonlinearity phase for harmonic generations , 2015 .